Fast Image Clustering Based on Convolutional Neural Network and Binary K-means
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Visual features used in state-of-the-art image clustering methods lack of independent learning ability, which leads to low image expression ability. Furthermore, the efficiency of traditional clustering methods is low for large image dataset. So, a fast image clustering method based on convolutional neural network and binary K-means is proposed in this paper. Firstly, a large-scale convolutional neural network is employed to learn the intrinsic implications of training images so as to improve the discrimination and representational power of visual features. Secondly, hashing is applied to map high-dimensional deep features into low-dimensional hamming space, and multi-index hash table is used to index the initial centers so that the nearest center lookup becomes extremely efficient. Finally, image clustering is accomplished efficiently by binary K-means algorithm. Experimental results on ImageNet-1000 dataset indicate that the proposed method can effectively enhance the expression ability of image features, increase the image clustering efficiency and has better performance than state-of-the-art methods.

    Reference
    Related
    Cited by
Get Citation

Ke Shengcai, Li Bicheng, Tang Yongwang, Wu Zhibing, Wan Jianping. Fast Image Clustering Based on Convolutional Neural Network and Binary K-means[J].,2017,32(5):970-979.

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 10,2018
  • Published:
Article QR Code