Method for Face Image Feature Extraction Based on Weighted Multi-Scale Tensor Subspace
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to keep the inherent higher order structure and correlation in the original data, reduce the influence of illumination in image recognition, and optimize the weight of the multi-scale feature, the method of image feature extracting based on weighted multi-scale tensor subspace is proposed to solve the problems. Firstly, multi-scale transform is used to characterize each place feature of the image, and uncertainty weighed is adopted on the role of each scale feature for image classification. And then a multi-scale tensor space is built using multiple linear principal component analysis and linear discriminant analysis algorithm to reduce the cost of processing, preserving the inherent structure and correlation of high-dimensional data. Finally, the extraction of the image features is completed. CAS-PEAL-R1 oriental face database is chosen for evaluation. The experimental results show that the algorithm performs better than some recent algorithms for image recognition with practical feasibility.

    Reference
    Related
    Cited by
Get Citation

Wang Shimin, Cheng Bailiang, Ye Jihua, Wang Mingwen. Method for Face Image Feature Extraction Based on Weighted Multi-Scale Tensor Subspace[J].,2016,31(4):791-798.

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 09,2018
  • Published:
Article QR Code