Speech Emotion Recognition Using Sparse Feature Transfer
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In speech emotion recognition system, recognition rates will drop drastically when the training and the testing utterances are from different corpora. To solve this problem, a novel sparse feature transfer approach is proposed. By employing sparse coding algorithm, the common sparse feature representation of emotion features from different corpora is obtained. Meanwhile, the maximum mean discrepancy (MMD) algorithm is introduced to measure the distance between different distributions, and is used as the regularization term for the objective function of sparse coding. Finally, the robust sparse features are achieved for recognition. Experimental results show that, compared to traditional methods, the proposed approach can significantly improve the recognition rates for cross databases.

    Reference
    Related
    Cited by
Get Citation

Song Peng, Jin Yun, Zha Cheng, Zhao Li. Speech Emotion Recognition Using Sparse Feature Transfer[J].,2016,31(2):325-330.

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 09,2018
  • Published:
Article QR Code