TDOA-DOA Mapping Using Multi-Kernel Least-Squares Support Vector Regression
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In sound source direction of arrival (DOA) estimation, one of the typical methods is based on the time difference of arrival (TDOA). For the TDOA-based sound source DOA estimation, the TDOA-DOA mapping is a crucial step. Here, we propose a TDOA-DOA mapping approach based on the multi-kernel least-squares support vector regression (LS-SVR), and also analyze its performance with sparsification. In addition, we present an outlier detection method based on the normalized median filtering to post-process the TDOA estimation for improving the performance of TDOA-DOA mapping in noisy reverberant environments. Simulation results show that the proposed method is superior to its counterparts, such as LS and single-kernel LS-SVR methods.

    Reference
    Related
    Cited by
Get Citation

Zhang Feng, Chen Huawei, Li Yanwen. TDOA-DOA Mapping Using Multi-Kernel Least-Squares Support Vector Regression[J].,2017,32(3):540-549.

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: June 28,2017
  • Published:
Article QR Code