Keyword Spotting based on Score Normalization and System Combination
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To effectively use the complementarity of different keyword spotting systems and solve the problem that the confidence scores from several different subsystems is not in the same range, a keyword spotting system based on score normalization and system combination is proposed. Firstly, to avoid keyword missing due to pruning errors in a large vocabulary recognition system, the keyword soft Beam pruning method is presented. Secondly, score normalization is needed to transform these confidence scores into a common domain, prior to combining them. Finally, after score normalization,the outputs are combined from different subsystems. Results show that score normalization methodology improves keyword search performance by 30% in average. Experiment also show that combining the outputs of diverse systems, system perform is 10% better than the best normalized KWS system.

    Reference
    Related
    Cited by
Get Citation

Li Peng, Qu Dan. Keyword Spotting based on Score Normalization and System Combination[J].,2017,32(2):346-353.

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 27,2017
  • Published:
Article QR Code