Application of Wavelet Denoising Algorithm in Noisy Blind Source Separation
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Blind source separation (BSS) algorithms based on the noise free model are not applicable when the SNR is low. To deal with this issue, one way is to denoise the mixtures corrupted by white Gaussian noise, firstly, and then utilize the BSS algorithms. Therefore, a Waveshrink algorithm is proposed based on translation invariant to denoise mixtures with strong noise. The high frequency coefficients sliding window method is utilized to estimate the noise variance accurately, and Bayesshrink algorithm is utilized for a more reasonable threshold. Consequently, the scope of the translation invariant is narrowed without degrading the performance of denoising, thus reducing the computation amount. Simulation results indicate that the proposed approach perform better in denoising compared with the traditional Waveshrink algorithm, and can remarkably enhance the separation performance of BSS algorithms, especially in the case with low signa.

    Reference
    Related
    Cited by
Get Citation

Wu Wei, Peng Hua, Wang Bin. Application of Wavelet Denoising Algorithm in Noisy Blind Source Separation[J].,2015,30(6):1286-1295.

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: December 24,2015
  • Published:
Article QR Code