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Path Planning Algorithm for Mobile Robots Optimized by Q-Learning Based on the Sparrow Search
Algorithm.
XU Yanglei, WANG Yongxiong

(School of Optical-Electrical and Computer Engineering ,University of Shanghai for Science and Technology , Shanghai 200093, China)

Abstract: To address the issues of slow convergence, high parameter sensitivity, and low computational efficiency in
robot path planning within dynamic unknown environments, a novel algorithm named SSA-Qlearning was proposed by
integrating the Sparrow Search Algorithm (SSA) with Quality-learning(Q-Learning). The method optimized the
learning rate and decay factor of Q-Learning by introducing the collaborative mechanism among discoverers, followers,
and scouts in SSA, and designed a dynamic weight adjustment strategy to adaptively explore the parameter space, thus
eliminating the bias in phase-based optimization of traditional Q-Learning. The algorithm quantifies environmental
dynamics by introducing a dynamic environmental factor to achieve a dynamic balance between exploration and
safety, maintained the lightweight characteristics of Q-Learning, and avoided the high computational cost of Double Deep
Q-Network (DDQN). The experimental results indicate that SSA-Qlearning significantly improves the path success
rate in 5>5, 10x10, and 15x15 dynamic grid environments, with training times being only 8.07%, 3.4%, and 3.03%
of DDQN, respectively, achieving a lightweight reinforcement learning effect close to the performance of DDQN.
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Fig.1 SSA algorithm flowchart
SSAKIZ LV RBARIAEZATTH . H BENSHZERESSHBHHFESAREERL, BBERE
MHREERRER, ERBNIGRREIT K. F, ®REITRRTERE I E SR P ES AL
Bl BEME, KIERMIEEEERIEN, DO R m A, 1ERAEEE RN 2= 0 i sens, g
ERSIORE . R, SSARBBGARIPIRRUSRRE T, EME @R AR B R T T
JRI AR A FO M o
SRT, FEFARFIRI I, R R AR AR 2N 2 QR R R . 25008 1K B A 2
R P A, Bt TR B AR L | R RS RIE AR A B AR T B FRE P I P R L, TR A R B AT 2R IR R
PRBEE HEAT JRAIT A, B E M A R R RN, BB NRFRR. F1XT BRI F AR B Re ik, SSATIA
T BhA A BTN AR A8 2 -1 TR & SRS, IXMURER T B R iEtE, B ERA T HAE
SIAIE T HERIME . S0 s KRV, M HAAGRRAEEENPSO), SSATEWSUE BT R FIRIIE L



4 B RESAE  Journal of Data Acquisition and Processing Vol. ** No, *%_ #¥%*
BA BERS.
1.2 Q-Learning 5 DDQN
Q-Learning & —F LAY 50 2% SJ 50, 1@ I 14 i QIE R (Q-table) it TR AS-BNEXT AT SR AR 22 Jih, H:
O ARET IURETTE, ni4):
Q(s,a )« Q(s.a )+
af i +YMax,Q(Sur, 8 ) - Qs ) |

b, RS s Rop BRI E, Wb EOUHMS I, s Ron B R bR: S a Ronigah i
CHEHE MY A\ B . Q(s,a) R M HPRE s N REGENE a IIQMH: ., FafEIRE s THATEIE &
Ja, BB ER —ANIRZSI PRI R RO 22050 max.Q (Sus 8 ) FoRIE F— MR sy T, FTA AT RESNME &
TQIE I AR, RV REA N NI R AL AR K22 o

FEASCH B AR BE AR BT A DU 1. 323l R B BEAR HEAT B a JE 3 RIS RO 0, 8 H G H
PR RS : B REVRBIA TN B b BRAG H L2 il b R ah: R RERRL i S sh AR FRAS Y ER 1S 1) £
Khhs P RED: BRI REMEARE R B SRAG M 02 2% 20K o IRHIQME B . ZEIRIA
Ty PEEEHT S AR E R . B B A T R R SRS (Ue-greedy)iZ AU LA N, B ARG IR AR
AR %, W2 TR N2 S 5 S

(4)

K2 5828
Fig.2 Turtle cliff problem

B B A XIRE R B, WO T&m k. @l 2O9aKEERABREIIEE, M
ARG AT . PRI, Q-LearningfE BEAR AR v i S FH T i AL ST P A8 A0 5 B N SRl Al e D0 ) et e DAL
IR TT AR BINIRE 21771k, TR Q-Learningd e N DQNERDDQN 5% .

TEBNASIEE T B RRIT S 4, DDQNSRILIE I &5 6 M 48 480 SR i % 2, W ITtT 7155
TTERIZ RS IR RR o &R 43 25 AR 42 I 4% (Online Network) Al H #7544 (Target Network), +
TR LRI 2% S DT A VR e %, T H AR 28 W T PRARIRES AT ERY, e H AR T 5 AT 28 y(5):

yj = I"j + YQtarget (Sj+1 vargmaXaQonline (Sj+l ’ a)) (5)

by FoR HARQME, ERIEN B ML HH AR r RRfEIRE s T REENE a Jm i RIS 2206
Quarget (Sj1) 72 HARMIEE LIRS T BIQME,  IXA™ H AR 2638 5 [ 5E (14 5 WA LA 55 254 1 (0 78 2 R 28 33047 (X 705
argmax, Quniine (Sj+1,8) RANFE N — IR sy T (A HATAIAELR N RIEFE— D IRLBIfEa, JFHEMNQME
KEH HARQIE . EBRAS RIS IR, W H KA P 28 BEAT i S AN B Lk, LT I8 24 1 22 & B (1 3K(6))
LG REAAAE R 5 B AR AL Z 1A SEBLP T . 5% SEIQ-Learning A b, DDQNIE 1 2256 [A] TEOHL il L B
THIEEBEM, IHEBNREANE MK ALV G REST, REWSAT AL B SRS 2 A A B A i 37
oo SHIREE R, TE10x101) 3 A WHE PR+, DDQNFI AR B Th R AR T 4 HDQNA R E 2T, I
FERNZRAIH A EIL 7 SR ALRE T o 2SR NS EIHLER N Bl Bl 5 U ) S it A A ) 2
PE T SHe B2 ST BRI R R TT 5




AR TR AL S R ST AR R S 5

+10 &% Hbp
r(s.,a)=1-5 HEFIFEHEY (6)
-0.1 HoAIF 4L

SR, DDQNSES RELETHEBE RWEM, KT HIGX— KR5S, & 7@ SSAEEMRIQ-
Learning[1)% 2] % o « ZEIREF y BISSA-Qlearning®H ik . #4SSA R AQ-Learning, [FI2P L1k 2% ] R FIZE I A
+, BERAAGITIER M BN 2 SINShABENLS], RIEINEIASE B sh B SR =, 1£3)
BB PR R 524, B REIORL Y BN, RFFESQ-Learning RN HA MR, it 240
Wik B #EDDQNRITERE, M4k 7 DDQN it ST i 7

2 SSA-Qlearning FRH K H AIHT =

21 EHEERENE

5 (1Q-Learning B 7 B AR HLR P IR R SR BN, UL R S S EaUR R B I R . (852 10
Bl & -greedy SEIK SEURZEIET, oI5, BRH T2 A T2\ T A 85 SRR %
B HAEE IR, Q-Learning 5 N R BRI 42 . 9 T SERRIX L jal 81, A SCEIN T SSASEE K
BLE-EREEE ], CUOPERR SRR, RGBS, Il BRI R R 04 B B AR I R . SSA-
Qlearning 3= KM T P BARAL LN . WE3FR, BB AR EESSAETIIGH BRI REMRS
WA, SRETELERVIGM B S H00 A& R . %8 E BObE R T 44 5:Q-Learning 76 2 23 F1 45 th
RBACRIE SO PSS 10 . SRR IR 1 BT R -

[
o
REY
L
g 3R
L
L 4
k1
JEOWHETY
o ¥

a;

S [RE2R]
Agent Agent

SSATRAL

Bl 3 SSA-Qlearning Hi TR
Fig.3 SSA-Qlearning algorithm flowchart
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Table 3 Computational comparison table
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TR REIENEREE BN T SSASEIRAL I IREL, T ORAESSATUAL AR, 4R ILER4. 5. 6.

& 4 (15x15) I ZREb R
Table 4 (15x15) Grid training comparison table
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Table 6 (5x5) Grid training comparison table
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Table 7 Result comparison table

Algorithm MR FSR R STD M/m
Q-Learning(/D) 14. 11 0.98 8.94 19.3/-5.4
SARSA(“D) 13. 40 1 9. 46 19.3/-6.9
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PSO-Q(’d) 14. 28 1 8. 86 19.3/-6.69
DDQN(/M) 13.74 0. 99 9. 26 19.3/-8.89
Q-Learning(*}") 7.64 0.99 10. 95 18.3/-11.4
SARSA(H) 8.89 0. 99 10. 96 18.3/-9.99
SSA-Q(H) 9.98 1 10. 41 18.3/-11.4
PSO-Q(#) 8. 41 1 10.99 18.3/-10.5
DDOQN() 12.03 0.97 9.5 18.3/-9.99
Q-Learning(X) -0.33 0.92 9.98 17.3/-11.7
SARSA(K) -0.29 0.96 10. 43 17.1/-11.8
SSA-Q(K) 3.43 0.99 11.16 17.3/-11.8
PSO-Q(K) -0. 02 0.89 10.29 17.2/-11.9
DDQN(X) 9. 61 0. 99 10. 14 17.3/-11.6
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Fig.5 Environmental (1) Result Chart
(a) Path simulation diagram  (b) Reward curve diagram
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Fig.6 Environmental (2) Result Chart
(a) Path simulation diagram  (b) Reward curve diagram
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Fig.7 Environmental (3) Result Chart
(a) Path simulation diagram  (b) Reward curve diagram
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