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A Lightweight 3D Object Detection and Localization Method
Based on Visual/LiDAR Fusion

JIANG Chengling!, HUANG Zheng?, SHEN Chao?, MA Zhoujun!, ZHANG Minghui?

(1.State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210024, China;2.Wuxi Power Supply Company of State
Grid Jiangsu Electric Power Co., Ltd., Wuxi 214000, China)

Abstract: Accurate 3D object detection and localization are critical for UAV-based inspection and
obstacle avoidance. Traditional methods often integrate detection and localization within a unified
network, resulting in complex architectures, high computational costs, and challenges in real-time
deployment. To address these issues, we propose a lightweight 3D object detection and localization
framework based on network decoupling. First, a lightweight 2D object detection network is designed,
incorporating efficient feature extraction and an enhanced attention mechanism, which significantly
reduces the number of parameters while improving generalization across diverse target types. Second,
we introduce a visual/LiDAR fusion-based depth completion network with cross-layer connections and
auxiliary loss functions to achieve high-precision dense depth map estimation. Finally, a pixel/depth
alignment scheme is developed to accurately compute 3D spatial positions of detected objects via
coordinate transformation. Experimental results demonstrate that, compared to the YOLOV9 detection
algorithm, the proposed method improves object detection accuracy by 14%, and enhances 3D
localization accuracy by 45% over the AVOD framework. Moreover, the proposed approach achieves a
processing rate of 36 frames per second on UAV edge devices, representing a 90% increase over AVOD,
highlighting its practical value for real-time UAV-based object detection applications.

Keywords: object detection; LIDAR; machine vision; deep learning; object positioning
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Fig.1 Schematic diagram of the lightweight vision/LiDAR fusion-based target localization algorithm
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Fig.2 Architecture of the depthwise separable convolution-based object detection network
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Fig.6 Architecture of the multi-scale depth completion network
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Fig.7 Schematic diagram of the experimental platform and environment
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Table 1 Comparison of depth completion accuracy
eS| YOLOv6 YOLOv7 YOLOV9 — ASCHE:

AT 0.72 0.74 0.76 0.79
HLZZ T 0.68 0.72 0.75 0.79
HIE 0.71 0.76 0.77 0.82
IEN 0.80 0.83 0.85 0.87
mAP 0.73 0.76 0.78 0.82

*® 2 BRHMRIERELR

Table 2 Accuracy comparison of algorithmic ablation experiments

(=A7R mAP

YOLOvV9 0.78

YOLOv9+DSC-ELAN+MDS 0.81
YOLOv9+DSC-ELAN+MDS+E-CBAM

R 082

(b) Detection of poles

(c) Detection of transmission towers (d) Detection of transmission towers, poles and streetlights
Pl 8 SR e g h R A7) H Ak I 45 SR ]

Fig.8 Obstacle detection results in practical power inspection scenarios
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11%- 7%, mAP fHIEE T 9%. bt YOLOV7 7 5l3EE T 5% 7% 6%+ 4%, mAP {HiEH
6%, EL YOLOVO 705 T 3%+ 4% 5% 2%, mAP {EHIESE T 4%, MXHEE T 5.1%.

20 ARSCHTHRRFIE SR S AR e 55 A R 2 A H T A stk H AR IR A e . MR 2 AT EA
EH, A DSC-ELAN 5 MDS #H 5, mAP $#27+ 3%, #t—F A E-CBAM fEL 5, mAP
BB EETE 1%, UEBH T B34 AE P2 URRRAE @il 25 IR 28 A5 H 1) A 2t

23 FREAERIE

H TR R GIREE bR E MO, R, BT A HER R IUE R FEAN 2 TR . 1B I KITTI
IREEAMEHER R NN GEARDS, HARFEGEREE RS M BEME RS, it
85898 MMIIZRFEAS . 1000 NMERUEFEASFT 1000 MIAFEA . LRI Batch Size K/NA 8, ¥4
%N 0.001, HAWESHOREAERIE, HIZE 40 4 Epoch. M IRIEZ (Root
mean square error, RMSE) FIPPI4a%11% 7% (Mean absolute error, MAE) {EATFETEFR.
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Table 3 Comparison of depth completion accuracy and speed

‘ RMSE MAE ‘
Bk i 1] (ms)
(mm) (mm)

Sparse2Densel!7] 815 250 87
FusionNet["!] 773 215 23
Improving Single-bral?%] 830 233 27
%2 REMTHHE 761 209 11
P A 755 203 11

(a) Visual images (b) Depth completion result by (c) Depth completion result by
FusionNet the proposed method
Kl 9 KITTI £t SR b 2z B &

Fig.9 Depth completion images from the KITTI dataset
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FusionNet l Improving Single-bra —2%y7:, i /7 1%A7E RMSE 484577l 1K 6.63%- 2.33%
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(a) Visual images (b) Depth images
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Fig.10 Depth completion images in the power environment
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(a) Localization error along the X-axis
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Fig.11 3D object estimation error curves
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Table 4 Comparison of obstacle localization algorithm accuracy

el AVOD/m F9k/m
PEAT 1.23 0.68
HLZE AT 0.89 0.53
L 1.61 0.86
i) 1.34 0.71

FRIRE 1.27 0.70
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Table 5 Comparison of algorithm processing time

ik AL PRI 7] /ms
AVOD 117
2 SCAG I Bk 17
A Bk 11

gt FIREIRR, nTLMEH LIRS T

1) RICHEEATH AR S B AR 5. HE 10 ATt L mran,  SRAERR & X
B IR BEBR AR T FHE MR, O HL R AT SRR WA (IR BEE S MR R 4T

2) ARICEFAE AVOD BA T S RS E AR E . A 11 v RLEH, AR50
Lt AVOD J7i: B Hm e A . Wi 4 s, 16 H e SR i o e A AT 45, AR
TR AVOD SHRAERRT . RZRAT. FREE . AEARPD S H AR E AR B K 44.72%.
40.45%. 46.58%- 47.01%, “VF-YJEAiFEEIRTE 45%. oSO MR E AN 4 W 28 T i il 22 OB
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(B RS EAT
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11ms, FALFRIS A N 28ms, AEFRACERARTF 76.07%. 45 & 4 AL I 48 5011 5 R fin sk s mg
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