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Fig.1 Framework of the proposed algorithm model
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Fig.7 tSNE plots for each modeling approach
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Table 1 Comparison of K-means, SVM and KNN accuracy scores for different models on the Characters

and Objects datasets

Method Characters 8yt 4E Objects %4 4
etho

K-means SVM KNN K-means SVM KNN
EEGNet” 0.18 0.36 0.56 0.16 0.28 0.53
TSception™ 0.48 0.56 0.68 0.52 0.58 0.67
ShallowConvNet™” 0.66 0.73 0.78 0.71 0.76 0.81
EEGConformer™ 0.62 0.74 0.87 0.69 0.76 0.86
LCM™ 0.72 0.77 0.84 0.72 0.78 0.84
WaveNet™! 0.71 0.75 0.84 0.64 0.71 0.78
EEG2Image™” 0.54 0.55 0.66 0.53 0.64 0.74
ARTLNet 0.75 0.79 0.85 0.76 0.79 0.86

0.21.,0.24 F10.19, 7€ Objects G4 43 B4 7 0.23.0.15M10.12, X F W, ARTLNet 7¢ F#AF $2 B
17 22 B0 L 0, W) kg AR KT T I 4% B 1R B A AR AR AR, DA ZE BE i R 1Y EEG BIHR . X AR 8 THEE )
B AE AR SR B 2 P R T EEG 155 P iy SC BB (8] 77 51045 ., TR] e 7k 2 3 2 O 1 AR AE 76 TR B2
I 26 (1 5 5 A% 1o AR BR
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T (9 EEG 5 55 o fiy A T 2= BUR R 14 18114 5 SPIE work fif F A% 2 90451 2 LUAR T RIR 45 40 5 3 LI 5%
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Table 2 Comparison of generation performance of different methods on the Objects dataset

Method IS FID CDS
AC-GAN(one-hot)™ 3.10 / /
AC-GAN™ 4.90 / /
C-Former™! 5.10 / 0.650 1
ThoughtViz*! 5.43 / 0.789 7
SPIE work"™” 5.70 / /
NeuroGAN™ 6.02 / 0.405 1
EEG2Image™ 6.78 7.28 0.602 2
Ours 6.98 6.25 0.5330

3 HHEFTE Objects HIHESE LR [EFiE K CDS 43 #1401 FID 7 #(34 Eb
Table 3 Comparison of CDS and FID scores for different methods on the Objects dataset for each category

CDS FID
Class (ImageNet) -

ThoughtViz C-Former EEG2Image Ours EEG2Image Ours
Apple 0.849 7 0.7213 0.6059 0.556 0 2.63 2.17
Car 0.839 1 0.562 1 0.599 1 0.519 1 4.15 3.61
Dog 0.696 5 0.632 7 0.614 2 0.610 4 2.41 2.26
Gold 0.656 1 0.5391 0.626 9 0.624 9 8.40 8.23
Mobile 0.854 1 0.7252 0.6181 0.567 4 13.31 11.76
Rose 0.8309 0.584 3 0.604 4 0.590 0 4.84 4.21
Scooter 0.6309 0.5915 0.542 6 0.3525 10.35 8.45
Tiger 0.906 8 0.759 4 0.593 9 0.398 7 5.16 4.28
Wallet 0.815 3 0.755 3 0.601 1 0.554 9 8.32 7.13
Watch 0.8215 0.629 7 0.616 0 0.556 4 13.21 10.36
Mean 0.789 7 0.650 1 0.602 2 0.533 0 7.28 6.25

F W A SRR TR A G PR A B 200 DX g3 DL R A P 8 45 S PR A AR (L 75 T e B T B iR ) fE
T30 AR AR B R AL B IS 2R R PR AR SO A
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T A SO A A S E U 2 WA iy ThoughtViz yﬂ..}
> — s
Sl S EEG2Image ’]\‘f’ l ﬂ.w
2.5 HEASIIR # BESiekimt,
y, W i A\ H > ] 1 i can
ST B EAS SCHT B ARTLNet #5588 i) A7 2004 Al o ! « I sf@m
WhHENE 43 I FE Objects Fl Characters 57 95 % F ¥E 47 A o=

TR . B AR SO0 oy i B R 0 AT B
2B I 2 S A R JH R LE A 2] 7 3k (Sim- Fig.8 Comparison of image generation results be-
CLR) 75 Jo b5 2 il vp 27 ~J A RLRE A 15 i 7R 19 0 tween the proposed method and four main-
B BRI HEAT A L, SRR A ARTLNet By £ 78 stream methods
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Table 4 Accuracy comparison of different model configurations on Characters and Objects datasets

Characters 34 4 Objects i 4E
Method

K-means SVM KNN K-means SVM KNN

Unsupervised 0.16 0.23 0.44 0.15 0.20 0.38

SSL 0.51 0.62 0.71 0.53 0.64 0.74

SSL+AT 0.73 0.75 0.81 0.70 0.70 0.73

SSL+AT+RC 0.75 0.77 0.85 0.76 0.79 0.86
25 0.7
20 0.6
0.5
15 0.4
10 0.3
0.2
5 0.1

0 Apple Car Dog Gold Mobile Rose Scooter Tiger Wallet Watch 0 Apple Car Dog Gold Mobile Rose Scooter Tiger Wallet Watch
= Unsupervised = SSL = SSL+AT « SSL+AT+RC » Unsupervised = SSL = SSL+AT = SSL+AT+RC
(a) THRISEIRFID 700 Ly (b) JHRALSEIRCD SO0 H
(a) Comparison of FID scores in ablation study (b) Comparison of CDS scores in ablation study
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Fig.9 Comparison of mass fraction of images generated by different model configurations
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EEG Signal-Driven Visual Image Reconstruction Model Based on Double Residual
LSTM and DCGAN

NI Zhewen, QUAN Haiyan

(School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China)

Abstract: Reconstructing visual images from electroencephalogram (EEG) signals has become an
emerging frontier in brain-computer interface (BCI) research, offering substantial potential in medical
image reconstruction, neural decoding, and cognitive state analysis. However, the inherently noisy, low-
amplitude, and highly temporal characteristics of EEG signals pose considerable challenges to robust
feature extraction and high-fidelity image synthesis. To address these limitations, this study aims to
establish an effective EEG-driven visual reconstruction framework capable of capturing fine-grained
temporal dynamics while ensuring semantic consistency in the generated images. The proposed model
integrates a double residual long short-term memory (LSTM) architecture with a self-designed deep
convolutional generative adversarial network (DCGAN). Specifically, an LSTM network based on
attention residual network and Triplet loss (ARTLNet) is constructed to improve EEG feature extraction
by combining residual learning, temporal modeling, and self-attention mechanisms. Batch normalization
and global average pooling are further employed to enhance signal stability and suppress feature
redundancy. In the reconstruction stage, a customized DCGAN incorporating feature fusion is adopted to
enrich semantic representation and improve image clarity and diversity. Experimental evaluations on both
Characters and Objects EEG datasets demonstrate that ARTLNet achieves consistently higher
classification and clustering accuracy across multiple algorithms compared with baseline LSTM and non-
residual architectures. The generated images exhibit clearer structural details and more distinguishable
category attributes, verifying the effectiveness of the proposed generative strategy. The results demonstrate
that the combination of residual enhanced temporal modeling and feature-fusion-based adversarial
generation can significantly improve EEG-driven visual reconstruction performance. This study confirms
the viability of exploiting advanced deep learning mechanisms to decode and visualize EEG information
with improved interpretability, providing methodological support for future BCI-based image
reconstruction and neural representation studies.

Highlights:

1. This paper introduces ARTLNet, an attention-enhanced double-residual LSTM architecture that

significantly strengthens EEG temporal feature extraction for downstream reconstruction tasks.

2. This paper develops a customized DCGAN with a feature fusion mechanism to improve semantic
consistency, image clarity, and category separability during EEG-driven visual generation.
Key words: deep learning; generative adversarial network; EEG signal decoding; self-attention; residual

connectivity
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