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Table 1 Subtype classification results of TCGA-BRCA dataset based on multi-scale methods
RIS ACC F, AUC

DSMIL 0.796 7£0.026 9 0.867 9£0.031 9 0.701 4+0.0254
MultiAttnMIL 0.8059+0.038 2 0.876 3£0.026 1 0.701 1£0.0555
HiFuse 0.809 8+0.027 2 0.877 4+0.022 9 0.710 7£0.022 5
AMGCFEN 0.810 8+0.0159 0.880 8+0.010 8 0.703 5+0.016 9
DMSMIL 0.853 9+0.011 2 0.906 9£+0.006 0 0.780 0+0.018 6

ETEZRE

FiEBMI TCGA-NSCLCHIRE T RISy R R

Table 2 Subtype classification results of TCGA-NSCLC dataset based on multi-scale methods

WRES

ACC

F

AUC

DSMIL
MultiAttnMIL
HiFuse
AMGCFN
DMSMIL

0.856 8£0.034 6
0.858 1£0.042 9
0.859 940.032 1
0.857 240.035 8
0.920 04+0.0159

0.852 840.046 4
0.854 6+0.0450
0.850 54-0.044 2
0.858 24-0.048 9
0.924 3+0.013 6

0.889 34-0.035 4
0.847 2+0.042 1
0.889 140.024 3
0.897 040017 9
0.920 0+0.016 5




B OB EATIEREEARSRESEAFINL A RERGE»EF & 239

3.2.3 MBS

ARSI X BT B 1 D5 R EAT T AT AR R A BT o HAARINT L 81X TCGA-BRCA F TCGA-NSCLC %t
i 45 P O [ 28 B A 4 00 75 BRS80Sy PR T A 21 T 438 0 % B o 22 T 2% v B A A
PR He i I3 — Ak v 2 45 4, 25 o S An 1 6 A 7 i/ o DAL 6 R 7 01 DL HY K [ 28 591 B9 4 S
B R A ER SR W TE B AR OR 22 5 0 BRI L FE FLIR /AN i U0 R oy, 2 A [RGB X i
AT 7 0 A5 93 AR 3 3 0 BT A 2 SR AT Ay TLA TR R, Jhe B0 HC X 0 9 3 7 B8 400 L DXk, x5 7L R 92 /)
I T EEL 98 R TR 0 A e A B AR — B0 5 2 AR R, B IE T A ) e ) AR B T R 45 4
TR T 3 6 1 43 VAR B o b B A0 X8R 3 T SPL R VR I 4 A MR Y 2 X A i i
Xof s e 9 1 i it bR 2000 JHL 9 4 S B b 0 R 0 A5 40 A SR AT WL AL L S I St R A Y TR AL
A T T A5 43, Lk e g A TR R i AR A T AR R i R A T % R 0 A T R 3X 5 Ml R
24 957 240 0 M T A 3 TR S 240 B R P R — BT £ TR AR SO M O i AL R S A
B3 AN [R) 26 B 42 U0 o B AR 38 B — 5 1 B 2 ] R

FLBR/NH- FUBRE

Score=0.13

Score=0.88

Score=0.94

0.0

K6 TCGA-BRCAEHi4E 4T DMSMIL 4326 75 vk (4 T8 58 91 453 7 vl Ak 45 R
Fig.6 Attention scores based visualization results of the DMSMIL method on TCGA-BRCA dataset
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Fig.7 Attention scores based visualization results of the DMSMIL method on TCGA-NSCLC dataset
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Table 3 Comparison of model parameters and time cost in various multi-scale fusion methods

ik e IR a] /s BRI ) /s
DSMIL 1894 072 13.72 0.014 1
MultiAttnMIL 854 789 9.68 0.009 6
HiFuse 3596 964 27.16 0.029 8
AMGCFEN 1065 247 19.83 0.017 9
DMSMIL 612 096 4.05 0.007 2
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Table 4 Ablation experimental results on TCGA-BRCA dataset

Z Rl SR % JURE [1] 5 P A% i 15 3k JUBE T AR T 1 O A T 5 - R 22
— — — 0.798 540.031 6
— — NG 0.8051+0.012 5
N — — 0.805640.032 4
N NG — 0.815340.027 5
N/ — NG 0.845140.025 1
N NG NG 0.853 94-0.011 2
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Table 5 Ablation experimental results on TCGA-NSCLC dataset

Z RO Al A SR JRUBE 0] dge A0 A% i B H JURE AT AR T 8 A A R+ AR vfE 22
— — — 0.848 14-0.020 8
— — NG 0.876 04-0.034 6
N/ — — 0.885740.021 0
N NG — 0.889 740.019 4
NG — N 0.902040.018 5
N/ NG NG 0.920 0+0.0159
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Whole Slide Pathology Image Classification Method Based on Deformable Attention

and Multi-scale Multi-instance Learning

XUE Bao, ZHOU Junjie, SHAO Wei’

(Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, College of Artificial Intelligence, Nanjing

University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract: Whole slide images (WSIs) serve as the golden standard for pathological diagnosis, and their
accurate classification provides critical information on tumor type, grade, and stage, which is essential for
cancer prognosis and treatment strategy selection. In computational pathology, multi-instance learning
(MIL) has become the mainstream approach for WSI classification. However, most existing MIL methods
focus on single-scale pathological images, limiting the understanding of cancer development and
progression mechanisms across different levels. Additionally, the high resolution of WSIs and information
discrepancies across scales pose challenges to efficiently integrating and analyzing patches both within a
single scale and across multiple scales. To address these issues, this paper proposes a WSI classification
method based on deformable attention and multi-scale multi-instance learning (DMSMIL ). Specifically, a
deformable attention branch is designed to learn associations among patches within the same scale,
enhancing attention computation efficiency. Meanwhile, an optimal transport (OT)-based association
algorithm is developed to integrate pathological information across different scales, enabling efficient multi-
scale information alignment. Experimental results on breast cancer and lung cancer subtype classification
tasks demonstrate that the proposed method achieves classification accuracies of 85.39% and 92.00%,
respectively, outperforming mainstream WSI classification methods. The proposed DMSMIL effectively
integrates multi-scale pathological features and improves the accuracy of WSI-based cancer subtype
classification, providing a promising approach for computational pathological diagnosis.

Highlights :

1. Propose a novel DMSMIL framework for WSI classification, integrating deformable attention and multi-
scale MIL to address single-scale limitations.

2. Design a deformable attention branch to enhance intra-scale patch association learning and attention
computation efficiency.

3. Develop an OT-based association algorithm for efficient multi-scale pathological information integration
and alignment.

4. Achieve 85.39% and 92.00% accuracy on breast and lung cancer subtype classification, outperforming
mainstream methods.

Key words: multi-instance learning (MIL); deformable attention; multi-scale learning; whole slide

pathology image classification; optimal transport (OT)
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