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Fig.1 Model of subspace clustering based on tensor low-rank learning
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Table 3 Experimental results on Yale dataset

ok | P FE AR
ACC NMI Purity F-score Recall AR
t-SVD-MSC 0.8744+0.013 0.918+0.010 0.883+0.012 0.834+0.020 0.865+0.018 0.83240.002
ETLMSC 0.659+0.042 0.697+0.038 0.6594+0.043 0.5334+0.044 0.550+0.048 0.501+0.021
WTNNM 0.8324-0.000 0.882+0.000 0.911+0.000 0.861+0.000 0.831+0.000 0.840+40.000
MLAN 0.5944-0.000 0.493+0.000 0.665+0.001 0.3124+0.003 0.428+0.016 0.25340.004
ARSCTT 0.98140.000 0.977+0.000 0.981+0.000 0.963+0.000 0.964+0.000 0.96040.000
R4 UCI-Digits I IEELBER
Table 4 Experimental results on UCI-Digits dataset
ok | P FE A
ACC NMI Purity F-score Recall AR
t=-SVD-MSC 0.96540.000 0.919+0.000 0.9654+0.000 0.935+0.000 0.922+0.000 0.91840.000
ETLMSC 0.942+0.000  0.90240.000  0.94240.000 0.9054+0.000 0.887+0.000 0.879+0.000
WTNNM 0.9844-0.000  0.962+0.000 0.98240.000 0.9724+0.000 0.970£0.000 0.97040.000
MLAN 0.72140.006 0.710+£0.006 0.7714£0.006 0.720+0.047 0.767+£0.007 0.70640.006
AR SCTT 0.99540.000 0.986+0.006 0.9954+0.000 0.990+0.000 0.990+0.000 0.98840.000
K5 ORLEBEEXRBLER
Table 5 Experimental results on ORL dataset
ok | P 5 AR
ACC NMI Purity F-score Recall AR
t-SVD-MSC 0.96240.008 0.990+0.003 0.973+0.006 0.960+0.009 0.979+0.006 0.95940.001
ETLMSC 0.958+0.024 0.931+0.005 0.9704+0.016 0.9604+0.020 0.9844+0.010 0.959+0.002
WTNNM 0.9824-0.00 0.99140.000  0.991+0.000 0.990-+0.000  0.99040.000  0.990-0.000
MLAN 0.56540.002 0.798+0.000 0.652+0.001 0.2774+0.021 0.657+0.001 0.2504-0.024
ARSCTT 0.98640.000 0.991+0.000 0.96740.000 0.990+0.000 0.990+0.000 0.98840.000
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36 BBCSportHFEELHLER
Table 6 Experimental results on BBCSport dataset
- | BRAEERA
ACC NMI Purity F-score Recall AR
t=SVD-MSC 0.556+0.000  0.51240.000 0.6494-0.000 0.5004+0.000 0.510+0.000  0.396+0.000
ETLMSC 0.6424-0.000  0.610£0.000  0.73940.000 0.421+0.001 0.410£0.003  0.39040.000
WTNNM 0.57340.000  0.531£0.000 0.65540.000 0.512+0.000 0.520+£0.000 0.41440.000
MLAN 0.24340.000  0.395+0.000 0.4204+0.001 0.1104+0.000 0.480+0.003 0.00940.001
ARSCTT 0.86740.000 0.865+0.000 0.90440.000 0.841+0.000 0.845+0.000 0.86940.000
=7 3SourcesHIFELIMER
Table 7 Experimental results on 3Sources dataset
ik | W 48 b
ACC NMI Purity F-score Recall AR
SVD-MSC 0.55840.004 0.438£0.009  0.6244-0.012  0.498+0.000 0.5094-0.000 0.395=+0.000
ETLMSC 0.52940.008 0.610£0.002  0.56540.000  0.739+£0.000 0.61740.000 0.539=+0.000
WTNNM 0.84140.000 0.900+£0.001  0.62740.000  0.810+0.000 0.8334+0.000 0.810+0.000
MLAN 0.172+0.001 0.15440.001  0.19240.001  0.475+0.000 0.592+0.000 0.34740.000
ARIT Ik 0.8844-0.000  0.938£0.000  0.8654-0.002  0.837£0.000 0.8344-0.000 0.825=+0.000
#8 Scene-15HIFELIMER
Table 8 Experimental results on Scene-15 dataset
- . LR
ACC NMI Purity F-score Recall AR
t-SVD-MSC 0.8924+0.000 0.91940.000 0.92240.000  0.883+0.000  0.892+0.000  0.874+0.000
ETLMSC 0.871+0.000  0.891+0.000 0.9064+0.000 0.85340.000  0.89240.000  0.842+0.000
WTNNM 0.9014+0.001  0.93140.000  0.93140.000  0.9014+0.000  0.833+0.000  0.891+0.000
MLAN 0.34240.003  0.4934+0.003 0.3544-0.002 0.2624+0.003  0.740+0.043  0.167+£0.045
ARSIk 0.9714+0.000  0.99140.000 0.97540.000 0.9874+0.000  0.987+0.000  0.986+0.000

3.5 XRERELHH

STEAE R, KT KR A B2k (I +SVD-MSC . ETLMSC . WTNNM Il TLR-MVSC)7E £
R P15 40 Ak v 3R R A 2R S M R 3 A T AR TR R RO I (W MLAN) o X R p 34 = 28 I TRk
it 7 VR A A 3 2 A0 TR B B T 3 R AR A A S TR A R D 1 400 T A L R I T 2 1 AN B
Bzz ) g A5 B, T S BOR R A BR B . I ANTE Scene-15 50 H 45 b, 3 F ol B A9 3 s M Al
SRR R RUR B TE T 255, X T, X 2 400 B EE o 0 R TR A AR R R 25 R O L 5k
T BB 0 T L7 b AT B ORI R B RN AT R 4R TR SR 2 kR

162 P T ok B B2 0 vk b, AR U ¥ 7E Scene- 15 8Udi 48 |-, 5 t+-SVD-MSC H 45, 4% 3 45 A1 44
Oy IR T 9% 8% 6% 1226 119 A1 13% . X —R# FEIR AR LT % & T A FUEF B
M 22 5 TR E AR SO Y 5K B Y BUR  ME R B L S5 A T A 1 25 PR Y 4 BT AN B S AR A
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Multi-view Subspace Clustering Method Based on Tensor Low-Rank Learning

SHI Desheng', XU He'*, LI Peng"?

(1. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;2. Jiangsu HPC and

Intelligent Processing Engineer Research Center, Nanjing 210023, China)

Abstract: Multi-view clustering is a powerful technique for improving analytical performance by fusing
complementary multi-source information. However, there are deficient in two ways: It neglects the strong
inherent correlation between representation tensors and affinity matrices, and the separate two-step
strategy of representation learning and clustering leads to lack of association between these processes,
rendering inefficient in handling missing data, noise and outliers in multi-view data processing. In order to
address these issues, this paper proposes a multi-view sub-space clustering method based on tensor low-
rank learning. A methodology is put forward for the analysis of high-order correlations among data points
and the identification of the intrinsic structure of the data. The method involves the introduction of a high-
order tensor constraint based on low-rank representation (LRR) and the adoption of tensor nuclear norm
minimization (TNNM) based on tensor singular value decomposition (t-SVD). This approach facilitates
the transformation of the original non-convex optimization problem into a solvable convex one. The
application of an adaptive weighted Schatten-p norm has been utilized to capture the inherent differences
between singular values, with the assistance of their prior information. Spectral clustering has been
integrated into a unified framework for the purpose of optimizing the affinity matrix, with a view to more
effectively characterizing clustering structures. The inexact augmented Lagrange multiplier (ALM) method
has been utilized to decompose the model into four solvable sub-problems for the purpose of efficient
optimization. Comprehensive experiments are conducted on six benchmark datasets spanning facial images,
news stories, handwritten digits and general objects, with systematic optimization of key parameters to
ensure reliability. The findings demonstrate that the proposed method exhibits a substantial enhancement in
performance when compared to four contemporary algorithms, namely t-SVD-MSC, ETLMSC,
WTNNM and MLAN. The proposed method demonstrated an accuracy of 0.981 on the Yale dataset,
0.995 on the UCI-Digits dataset, and 0.971 on the Scene-15 dataset. The proposed method effectively
increases the robustness of the affinity matrix against noise and outliers. It accurately extracts the intrinsic
subspace structure of multi-view data and demonstrates excellent practical performance and strong
generalization ability in the analysis of high-dimensional and incomplete multi-view data.

Highlights

1. This paper proposes a method of representing data as a high-order, tensor—constrained, low-rank
matrix, which can be used to analyse high-order correlations between data points. It can also effectively
enhance the robustness of affinity matrices against complex noise and various outliers in multi-view data.

2. This paper uses T-SVD-based TNNM and an adaptive weighted Schatten-p norm to optimize affinity
matrices. This approach captures the inherent differences between singular values and exploits their key
structural information in tensor data.

3. This paper proposes a unified tensor low-rank learning framework that integrates spectral clustering
techniques to optimize the fusion similarity matrix. The method demonstrates strong clustering performance
across six classic benchmark datasets spanning four data types, with significant improvements over
previous algorithms in evaluation metrics.

Key words: multi-view clustering; tensor low-rank; subspace clustering; high-order correlation; tensor
decomposition

Foundation item: National Key Research and Development Program of China (No.2019YFB2103003).
Received: 2024-09-20; Revised: 2024-12-12
*Corresponding author, E-mail: xuhe@njupt.edu.cn.



