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Fig.1 Overall architecture of the proposed network
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Fig.2 Structure of the proposed multi-scale feature enhancement module (MSFEM)
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Fig.3 Flow chart of the proposed feature denoising module WaveDeno

W AR PR R AL T — A R T, BRIV e 4 R £ R B R S, R A B AR A R A R R
XA SRR AE m € R 30 3 A I X AT 4 SR 1 it A R4 R B b AR A | B

S,=R(GAP(m)-+ GMP(m)) (10)

K HGAP(m), GMP(m)ER" MV 5 — 3 AF A= i T WS E R SE . N T 3h BB R O, %4
B 550 R AIE i A B 4 21 42 % 32 /2 (Group fully connection layer, Group FC)H, X —id 2 # i8N



BT B A R ] i AR AR RO e 4R 49 SAR B AR 207

@(7?1)2(1*a(Dgr<é‘<Dg(§f)>>)>®n~1 (11)

K :m FoR i A B 28 2ok FHE S W RHE 0] 5 5 D, o 3 R R g W 43 2 A )2 AR SE B P o E
B A LAV R, DI BROACR 2.4 .8 .16 DU A 43 20 B i ;0 103K Re LU 0G e 8 D, oW 5 — 40
AR AN S A H e R B o0 3R Sigmoid TG R

XA 1A A F (e A5 IR 2% AT AR o A 1) B8 B X HG R 0 G B R 4 0 (MR S ) R AT R, [RD AR B e i
4 CHAR) BYERAEAR B, 38 B s 2= e 510 R4l H ) .

B 5, 48 R 25 o A A AR AIE 11 1 25 M AR A2 G AR T AR GR AR

M’ZW(Q(FS(M,@(M))) (12)

R MR Z it WaveDeno 25 B 5 (0 5 1 ERAE K, R 678 1 HETRVE 00 00 B 1E , W 68 4k /NI 3

/E%ﬁo
2 SI§

2.1 HE\ERIWINE

N T B R T R R B AT SRR KR E M, B MS AR SARDet-100K s 4547528 . MSAR%L
P &% 5k [ E T IE SAR TR W22 —5 (HISEA-1) , £ 7 28 449 7k K ~F ok 256 X 256 14 % i SAR &
1%, d 425133 60 396 4S5 28 A, £ 5 39 858 AMHAA H Ak .1 851 HF 32 H AR .12 319 4~ B H A5
F16 3681 KL H Ax , TEHL 19 914 7k FURAE R I 2548 , 8 535 sk MR AE Al 4 , B AR A~ & b A
B SARDet- 100K H i 423k [ F 10 4~ JF 19 i It 20Hs 42 4 5 3k A b = RHIF R 1] LBk
YD (8 0 R 11 R S5 [ Y A2 S ) R AR B Ll 6 S 28 I 3R 5T 245 653 A4S SE AL AR, 5 B 94 493 5K &1 1%
YERINZRAE 10 492 5k EMEAE R B TEAE , 11 613 5K FHRAE 0 A4, BLaf AR 3B 4R & h R E R I
N .

SCB 345K F Windows11 #:4E & 48, CPU A Intel (R) Core(TM) i7-12700K, GPU i NVIDIA Ge-
Force RTX4090 24 GB, 3% JH i IR B 2% 2 HE 48 4 Py Torch 2.0.1 + CUDA 11.8. & T {8 PFAl il — Stk
TN SME TAT B0 1) i A TR AR 359 28 2o b o £ 1 50 0 42 T Ak BBV b B . P MISAR B4 48, 4 i A7
SR DAdapt-Adam A6 &5 #E 47 U125, U ZR58 K (epoch) 3B 50, Yl Zhftt it (batch-size) K/ &
R 64, WA 24 2 U E N 1.0, AU W% 5 0.05; % F SARDet-100K 4t 42 , Yl g vk i &k 30, |
Rt i R/INECE O 16, HiA B 5 0T MSAR $0dls S 47 I 2B AR R
2.2 EMIERR

T2 A K 0 450 38 v, T B 0 A DE A 35 B L 5ORS B (Precision) 4 [ 5% (Recal )™,
FH T 3 F 38 1 e (Intersection over union, ToU)#E4T, ToU & 7 T AE 5 B S HE (1) 5 8 2 B 70000 &5
5 AR R VC AR B R A
E(Maskl &. Mask?2)

Z(MaskHMaskZ )

A 2 (13) AT, ToU My BUE S AL T 03 1 22 8] U B O RN SE A EE  BUE N 1 KRR L ES,
3 o K AR Ay R 2 B I 5 R 38— A ] (A Sy A 7R 0 45 SR 1 B ) s A

IR ST AR ToU K T3 8 19 B A5 B B, JUI DA Sy X 7 17%) 150 0 A J2& 0 BH 4 ( True positive, TP) 1 ;
WSR3 A ToU /I T 38 2 19 5505 B2 B AR, D0 TA R 5% Rz A i A J2 {2 B P (False positive, FP) 4 ; W4

ToU = (13)




208 R E B L Journal of Data Acquisition and Processing Vol. 41, No. 1, 2026

TE LSBT b i G HE (EL I s S B T SRR, I8 4 DA R S BB (True negative, TN)[#;
TSR A LSRR A TR AR IC AE I A S DT Y TN AE IR 4D B 2 R (False negative, FN)
Mo AR UL b SRS T DRI R
Precision = 1 (14)
TP + FP
S (14) 3B T BRI T K L0 T A REAR v, 5 ARSI B A REAS 19 o5 b, B C ARSI 380 1% E A 19 A v %
AR R

Recall = — 2 (15)
T TP RN

C15) 18 SO AE BT i B AR AR o B 0E B 000 1 0 Bt o5 b, BDRRAG I AR i 4 R

KT LR RS B AN AR 2 SR P RS B (Average precision, AP) S UWERIEMNHEFR N T ARIETE
Mg A SR R T AP'07 . AP'12 AP@50 AP@75 VAR EM F8 4R o A 7 sk iR A0 T il bR AR IR E
1Y BB T 75 2] (% Recall £ 4 85 A 45, Precision 4 4 9L A 45 , 75 E] Precision-Recall(PR) i1 £k , AP'07 3%
T AR A | 45 ] BE PR B 11 Recall {40.0,0.1,0.2,-++,0.9, 1.0, B 3% 11 AME X I3 59 Precision {5 BCF
b WUIORS B, ek Xk

AP’O7=1—11 X(AP(0)+ AP,(0.1)+ AP(0.2)+ --- + AP, (1.0)) (16)

W5, BFIE N R JF & T 3T 20 A (B AL B 19 PR 265 Xl 04 £ 45 1 BUR fr RS B S A IR
LEAPERE, B AP 12, RA RN

n—1

AP’12:z(rldrliri)pintcrp(r1'+l) (17>

i=1

e, oY i Recal ., pier, () F78 1, A X5 B B Precision B o 24 » #4 1T T T 55 K B 7m 4. 4% il
2 B, B

1
AP'IZZJ Precision( Recall )d( Recall) (18)
0
TEFRBUEE 42 T B2 0 AP (E S , BOCHSF 24 BRI ] 45 2048500 78 BT A 200 H ARSI b (0 255545 1, B
1 n
mAP—;;APi (19)

Ko HEEE P HARB R 2880, AP, R 58 i 285 B9 YRS A .

TE bR A6 045 38k, BB Lin 252 (0 BIF 8 0 75 L 34 B ToU B8 SRS TDKS B (Y 1A 45 4% , 24 ToU
BUE A 0.5 B T 45 B A8 S 24085 B “ AP@507, 24 ToU BUE A 0.75 B T 75 21 18 S 2085 JE Bl B “AP@75”
2.3 XTLEER R ARSI

BB Y B 5 Y TR N ST B B 7E MSAR B0 P8 4 AT b 5256, R B s 45 Faster
R-CNN"™  ConvNeXt"" PVT-T"H1 YOLOF"™ . % F B 42 5 1k L K o B30 78 DI 25 A0 0038 i 1) %
A EMG 35955 2R A — £k 7004 35 D AR UE Y1 25 2ok B v i) AR 1 DA SR R AE SAR H A A AF: 55 b 1 38 3
PE. LA RANGR 1FTn , 4 SAR EIG B brer i 50 0 Pk G 88 8 1 4 Fh s 45 R 32 1 i PR e B R I 55 1
Bk, FELLAPOTVE R PEMN B AR BT , mAP A B T 70.02% , #HEE T 55 A A P B 40 B4R TH T 12.95% .
13.67% .34.63% F121.90% ; 7€ LA AP 12 /E R iF M 48 bR, mAP ik 8] 1 71.18% , M4 T 53 4 4 Fh L% 4y
BT T 15.52% .13.42% . 42.06 % F1 25.08% o H X F I £ AR R B AR LB T Fe b sk
B RS ) K B, I IE T AR AR A M



BT B A R ] i AR AR RO e 4R 49 SAR B AR 209

®1 FEMSARHIEE LHXLERWER

Table 1 Comparative experimental results on the MSAR dataset 0

Average precision (AP'07) Average precision (AP'12)
mAP i H i e P KL mAP B ik i 52 AL
Faster R-=CNN 57.07 84.23 66.82 76.61 0.61 55.66 83.83 66.72 71.83 0.26

RS

ConvNeXt 56.35 81.18 63.60 71.53 9.09 57.76 86.02 66.89 76.58 1.55
PVT-T 35.39 60.95 49.73 30.44 0.43 29.17 56.76 33.96 25.47 0.50
YOLOF 48.12 69.97 50.56 62.87 9.09 46.10 72.97 49.86 61.29 0.28
Proposed 70.02 89.44 63.40 78.99 48.25 71.18 90.75 68.43 79.25 46.30

O T UL R L B RS R A AR A I N B 28OR N MIS AR BiHi 45 Y I 145 2R BEBIL e B T B 1A 4
Fr7s 19 FHARZERY, 70 550 S TR MR LT e R B R 4 2E R DN 4 2R AT AT AR L b i A
HEARZE H AR BRI 0 AL, 5= GAEAUSR B AR PR it R, s G HE AR SR H s g RO D I, 20 (A AR R
HARBOR B ARG . n] IR, I8t S0k e o 40 .55 H Ar 095 00 T A5 B £ — 2 B9 R I 7 E 15285 B2, A
BT HARS kR A A S AL B T ] G

Ground truth Proposed Faster R-CNN ConvNeXt YOLOF PVT-T
litif T i Tl it

4 7E MSAREHELE I ml B AE X Lb 52 56 45

Fig.4 Visualization results of comparative experiments on the MSAR dataset
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Table 2 Comparative experimental results on the SARDet-100K dataset %
ik mAP  AP@50  AP@75 K ! " i e P i
Faster R-=CNN 45.90 79.60 47.60 54.42 51.46 57.80 28.83 32.70 50.19
ConvNeXt 53.20 85.40 58.30 60.51 57.39 62.23 38.02 36.51 64.54
PVT-T 48.70 80.80 53.94 56.15 57.06 58.63 34.20 25.11 61.05
YOLOF 39.20 72.90 38.20 50.65 49.32 49.66 19.83 20.94 44.80
Proposed 55.90 85.50 60.10 64.90 57.41 63.46 45.77 36.41 67.45
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Fig.5 Visualization results of comparative experiments on the SARDet-100K dataset
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Table 3 The strategy of ablation studies
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Table 4 Ablation experimental results on the MSAR dataset %

Average precision (AP'07) Average precision (AP'12)
mAP A T 7 P KL mAP s A2 i i % AL
Case 1 70.02 89.44 63.40 78.99 48.25 71.18 90.75 68.43 79.25 46.30
Case 2 67.70 89.11 63.27 74.48 43.95 69.61 90.33 68.19 77.14 42.78
Case 3 65.82 89.21 63.28 73.46 37.31 67.74 90.06 68.14 76.66 36.08
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SAR Target Detection via Joint Spatial-Channel Feature and Frequency Selection

JI Xiaoping', TAO Pu*

(1. Leihua Electronic Technology Research Institute, Aviation Industry Corporation of China, Wuxi 214082, China; 2. College of

Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract: Synthetic aperture radar (SAR) imagery is characterized by a large number of targets with diverse
categories and significant scale variations, as well as highly complex background clutter caused by coherent
speckle noise. These inherent properties substantially degrade detection accuracy and pose significant
challenges to reliable target detection. To address the problem of insufficient detection performance under
such conditions, this paper proposes a SAR target detection algorithm that jointly exploits spatial-channel
feature fusion and frequency selection. Specifically, a ResNet-50 network pre-trained on large-scale datasets
is adopted as the backbone to extract hierarchical and multi-scale feature representations from SAR images.
On this basis, a feature pyramid network (FPN) augmented with a joint multi-scale spatia-channel feature
enhancement module is constructed to strengthen the representation capability of features at different scales.
This design enables the network to more effectively capture discriminative target information while
alleviating the adverse impact of scale diversity among targets. By jointly modeling spatial and channel-wise
dependencies, the proposed enhancement module improves feature expressiveness and robustness,
particularly for small and weak targets embedded in cluttered backgrounds. Furthermore, a frequency
selection module is introduced in the feature domain to explicitly exploit the frequency characteristics of
SAR imagery. This module selectively suppresses noise components while preserving informative target-
related signals, thereby enhancing target features and improving the signal-to-noise ratio. Through adaptive
frequency-domain filtering, the proposed method effectively mitigates the influence of speckle noise without
sacrificing critical structural information, leading to more reliable feature representations for subsequent
detection. Extensive comparative experiments are conducted on two widely used benchmark datasets,
MSAR and SARDet-100K, to evaluate the effectiveness of the proposed approach. Experimental results
demonstrate that the proposed algorithm consistently outperforms several representative and state-of-the-art
SAR image target detection methods, including Faster R-CNN, ConvNeXt, PVT-T, and YOLOF,
across both datasets. These results indicate that the proposed framework achieves superior detection
performance and exhibits strong generalization capability under complex SAR imaging conditions. Overall,
the proposed method provides an effective solution for improving SAR target detection accuracy in scenarios
involving complex backgrounds, severe speckle noise, and multi-scale target distributions.

Highlights:

1. A novel SAR target detection framework is proposed that jointly integrates multi-scale spatial-channel
feature enhancement with frequency-aware feature modeling, enabling robust target representation under
severe scale variation and speckle noise.

2. A feature-domain frequency selection mechanism is developed to explicitly exploit the spectral
characteristics of SAR features, selectively suppressing noise components while preserving discriminative
target information.

Key words: SAR target detection; multi-scale feature; spatial-channel feature; frequency selection; feature

denoising
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