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Fig.1 Overall architecture of the proposed network
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Fig.2 Structure of the proposed multi-scale feature enhancement module (MSFEM)
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Fig.3 Flow chart of the proposed feature denoising module WaveDeno
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Table 1 Comparative experimental results on the MSAR dataset 0

Average precision (AP'07) Average precision (AP'12)
mAP i H i e P KL mAP B ik i 52 AL
Faster R-=CNN 57.07 84.23 66.82 76.61 0.61 55.66 83.83 66.72 71.83 0.26

RS

ConvNeXt 56.35 81.18 63.60 71.53 9.09 57.76 86.02 66.89 76.58 1.55
PVT-T 35.39 60.95 49.73 30.44 0.43 29.17 56.76 33.96 25.47 0.50
YOLOF 48.12 69.97 50.56 62.87 9.09 46.10 72.97 49.86 61.29 0.28
Proposed 70.02 89.44 63.40 78.99 48.25 71.18 90.75 68.43 79.25 46.30

O T UL R L B RS R A AR A I N B 28OR N MIS AR BiHi 45 Y I 145 2R BEBIL e B T B 1A 4
Fr7s 19 FHARZERY, 70 550 S TR MR LT e R B R 4 2E R DN 4 2R AT AT AR L b i A
HEARZE H AR BRI 0 AL, 5= GAEAUSR B AR PR it R, s G HE AR SR H s g RO D I, 20 (A AR R
HARBOR B ARG . n] IR, I8t S0k e o 40 .55 H Ar 095 00 T A5 B £ — 2 B9 R I 7 E 15285 B2, A
BT HARS kR A A S AL B T ] G

Ground truth Proposed Faster R-CNN ConvNeXt YOLOF PVT-T
litif T i Tl it

4 7E MSAREHELE I ml B AE X Lb 52 56 45

Fig.4 Visualization results of comparative experiments on the MSAR dataset
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Table 2 Comparative experimental results on the SARDet-100K dataset %
ik mAP  AP@50  AP@75 K ! " i e P i
Faster R-=CNN 45.90 79.60 47.60 54.42 51.46 57.80 28.83 32.70 50.19
ConvNeXt 53.20 85.40 58.30 60.51 57.39 62.23 38.02 36.51 64.54
PVT-T 48.70 80.80 53.94 56.15 57.06 58.63 34.20 25.11 61.05
YOLOF 39.20 72.90 38.20 50.65 49.32 49.66 19.83 20.94 44.80
Proposed 55.90 85.50 60.10 64.90 57.41 63.46 45.77 36.41 67.45
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Fig.5 Visualization results of comparative experiments on the SARDet-100K dataset
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Table 3 The strategy of ablation studies
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Table 4 Ablation experimental results on the MSAR dataset %

Average precision (AP'07) Average precision (AP'12)
mAP A T 7 P KL mAP s A2 i i % AL
Case 1 70.02 89.44 63.40 78.99 48.25 71.18 90.75 68.43 79.25 46.30
Case 2 67.70 89.11 63.27 74.48 43.95 69.61 90.33 68.19 77.14 42.78
Case 3 65.82 89.21 63.28 73.46 37.31 67.74 90.06 68.14 76.66 36.08
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SAR Target Detection via Joint Spatial-Channel Feature and Frequency Selection

JI Xiaoping', TAO Pu*

(1. Leihua Electronic Technology Research Institute, Aviation Industry Corporation of China, Wuxi 214082, China; 2. College of

Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract: Synthetic aperture radar (SAR) imagery is characterized by a large number of targets with diverse
categories and significant scale variations, as well as highly complex background clutter caused by coherent
speckle noise. These inherent properties substantially degrade detection accuracy and pose significant
challenges to reliable target detection. To address the problem of insufficient detection performance under
such conditions, this paper proposes a SAR target detection algorithm that jointly exploits spatial-channel
feature fusion and frequency selection. Specifically, a ResNet-50 network pre-trained on large-scale datasets
is adopted as the backbone to extract hierarchical and multi-scale feature representations from SAR images.
On this basis, a feature pyramid network (FPN) augmented with a joint multi-scale spatia-channel feature
enhancement module is constructed to strengthen the representation capability of features at different scales.
This design enables the network to more effectively capture discriminative target information while
alleviating the adverse impact of scale diversity among targets. By jointly modeling spatial and channel-wise
dependencies, the proposed enhancement module improves feature expressiveness and robustness,
particularly for small and weak targets embedded in cluttered backgrounds. Furthermore, a frequency
selection module is introduced in the feature domain to explicitly exploit the frequency characteristics of
SAR imagery. This module selectively suppresses noise components while preserving informative target-
related signals, thereby enhancing target features and improving the signal-to-noise ratio. Through adaptive
frequency-domain filtering, the proposed method effectively mitigates the influence of speckle noise without
sacrificing critical structural information, leading to more reliable feature representations for subsequent
detection. Extensive comparative experiments are conducted on two widely used benchmark datasets,
MSAR and SARDet-100K, to evaluate the effectiveness of the proposed approach. Experimental results
demonstrate that the proposed algorithm consistently outperforms several representative and state-of-the-art
SAR image target detection methods, including Faster R-CNN, ConvNeXt, PVT-T, and YOLOF,
across both datasets. These results indicate that the proposed framework achieves superior detection
performance and exhibits strong generalization capability under complex SAR imaging conditions. Overall,
the proposed method provides an effective solution for improving SAR target detection accuracy in scenarios
involving complex backgrounds, severe speckle noise, and multi-scale target distributions.

Highlights:

1. A novel SAR target detection framework is proposed that jointly integrates multi-scale spatial-channel
feature enhancement with frequency-aware feature modeling, enabling robust target representation under
severe scale variation and speckle noise.

2. A feature-domain frequency selection mechanism is developed to explicitly exploit the spectral
characteristics of SAR features, selectively suppressing noise components while preserving discriminative
target information.

Key words: SAR target detection; multi-scale feature; spatial-channel feature; frequency selection; feature

denoising
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