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Fig.6  Visual presentation of each method in Kalantari test set
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Table 1 Quantitative evaluation of reconstruction results by different methods on the Kalantari test set

7 ¥ PSNR_x/dB PSNR_L/dB  SSIM p SSIM_I.  HDR-VDP-2 MEF-SSIMd
Sen™ 40.95 38.31 0.983 2 0.975 3 60.33 0.638 4
Kalantari™’ 42.74 40.72 0.987 7 0.982 4 62.87 0.640 7
AHDRNet™® 43.61 41.04 0.990 0 0.970 2 63.51 0.6511
HDR-GAN™ 43.92 41.57 0.990 5 0.986 5 64.70 0.652 0
HDRI® 43.65 41.67 0.989 4 0.986 7 64.46 0.653 4
HDR-Transformer” 44.08 42.10 0.9917 0.988 8 64.63 0.652 8
SGARN™ 43.92 41.46 0.990 8 0.987 4 65.12 0.655 9
Ours 44.41 42.43 0.992 0 0.990 2 65.13 0.657 8

2.2.2 BERAFEKEE LG R

7 fE S, Sen X} T i B G X TG AR 4 B 2 s Kalantari £ & 7 0 A5 KB B LK, MER S
ZIHE b, P 1 43 1 & s AHDRNet A1 HDR-GAN 7 8 7 of JG ik & 2@t i {5 &, [ i AHDRNet Al
HDR-Transformer 7& [# 8 H1 {1 4% 5 [7] #£ 72 76 O 5% , HDR-GAN # HDRI W J¢ 22 4R # o £ 0 ' X B A5
SGARN ¥ A7 B B Db 52, (E ] T 1 Bk X 4k g R FRAR, S 8RGOt KRR (1 4% . 28 Bk, BT i
J5 B BT AE R HDR BEURAE LG b e oA 7 sk Oh 58 /0 A (5 B 5 . R 2 & A8 AR E A b
A LAE B B4 5 A A MR RE B ARAA B T R .
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Fig.7 Visual presentation of each method in Sen dataset
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Fig.8 Visual presentation of each method in Tursun datasets
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F2 SenHl TursunMiX&E L AREHFENERLEREE T

Table 2 Quantitative evaluation of reconstruction results by different methods on Sen and Tursun test sets

. Sen Fu 4 £ Tursun £ 4
ik BTMQI v MEF-SSIMd 4 BTMQI v MEF-SSIMd 4 UDQN 4
Sen 3.724 2 0.789 6 4.277 1 0.6557 0.393 8
Kalantari 3.767 9 0.763 6 3.9409 0.653 2 0.398 4
AHDRNet 3.687 7 0.7957 3.920 5 0.657 0 0.426 0
HDR-GAN 7.1340 0.799 2 7.0330 0.666 3 0.4118
HDRI 5.503 6 0.802 4 5.042 3 0.628 3 0.409 8
HDR-Transformer 2.905 6 0.795 6 3.406 0 0.637 2 04141
SGARN 3.647 3 0.800 3 3.781 5 0.661 2 0.4311
Ours 2.8019 0.803 6 3.300 2 0.670 3 0.434 4

2.3 HRLEI
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WA OAETE S 2R G e, Wi PO F% 5 w/o MEB R EH I AT 2 90l & B

Z E ARSI B A RO 9 B R T 2 H 2 0 B AE L HDR BUR P AR R B i D
T IMEAE BRI A T 2 E OS2 EE  HDR BHR 0 T 78 TR

L L 3 o e

w/o MASB & MFB w/o MASB w/o MFB Ours Ground truth
(SRS AT NS 1 15 W SV e R R VS

Fig.9 Visual results validating the effectiveness of different components of this paper

x3 BWMoBAVEMNEINITMN

Table 3 Objective evaluation of the effectiveness of each component

T il 1 PSNR _p/dB PSNR_L/dB SSIM _p SSIM _L HDR-VDP-2
w/0o MASBR.MFB 44.08 41.75 0.991 4 0.988 1 64.88
w/o MASB 44.12 42.13 0.9917 0.988 9 64.93
w/o MFB 44.26 42.25 0.9917 0.989 0 64.95

Ours 44 .41 42.43 0.992 0 0.990 2 65.13
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Fig.10 Effect of hyperparameter variation on model performance on Kalantari test set

2.5 REIRRSH
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Horp, fdi ) Kalantari 1 104 o (9 15 5K G T F 54 B ) o 0F P25 2R o, VA Jr 2 A i 0 2
ot IF AR fe /D EAREL T HDR-GAN A HDRI, A58 5 9 /N2l 3532 16 o 4f B 8] 75 7, A7 i AR 2k 3
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S A LA P RE BT ER AR L A S BRIV T RO AT AT Y
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Table 4 Performance comparison of different methods on the number of model parameters and inference

time
Tk Sen Kalantari AHDRNet HDR-GAN HDRI HDR-Transformer SGARN  Ours
BRI B R /100 — 0.3 1.44 7.67 6.70 1.46 0.89 1.68

HESL ] /s 61.81 29.14 0.30 0.69 20.61 4.92 0.53 0.66
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2.6 BRMESH
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High Dynamic Range Imaging with Multiple Artifact Suppression and Multilevel

Fusion

LUO Juncheng, XIE Minghong, ZHANG Yafei, LI Huafeng
(School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China)

Abstract: Due to the limitations of existing imaging equipment, it is difficult to obtain high dynamic range
(HDR) images directly. High dynamic range imaging technology is designed to generate HDR images by
processing low dynamic range (LDR) images. Most existing deep learning methods reconstruct HDR
images by fusing multiple images with different exposures. However, due to the relative movement of
foreground and background, artifacts appear in the final reconstruction result. Existing methods only
perform artifact elimination before fusing multiple images with different exposures, which leads to a heavy
dependence of the final HDR image quality on the artifact suppression results before fusion. Moreover, the
artifact information introduced during the fusion process is difficult to eliminate in subsequent reconstruction
due to unsatisfactory artifact suppression. To address this, we propose a network framework for multi-
artifact suppression of reconstructed features and multilevel information fusion to efficiently reconstruct
HDR images. First, we handle the differences between different images and features through multiple
artifact suppression. Unlike existing methods that only process images or features before fusion, we
perform multiple artifact suppression block (MASB) on the features during the reconstruction process to
further suppress artifacts in the reconstructed features. Simultaneously, to better utilize the features of non-
reference input images, we propose a multilevel fusion block (MFB), through which complementary
information from non-reference images can be further extracted. Experimental comparisons on multiple
datasets demonstrate that the proposed method achieves better performance in both subjective visual effects
and objective metrics.

Highlights:

1. A novel network framework is proposed for HDR image reconstruction, integrating multi-artifact
suppression and multi-level feature fusion.

2. Multiple artifact suppression block (MASB) is applied during reconstruction to further reduce artifacts in
features.

3. Multilevel fusion block (MFB) is designed to better exploit complementary information from non-
reference images, enhancing the utilization of multi-exposure inputs.

Key words: high dynamic range imaging; deep learning; multiple artifact suppression; multilevel fusion
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