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摘 要： 岩石薄片显微图像常常呈现出局部纹理复杂、模糊以及高噪声的特征，导致传统的特征提取和

匹配算法在高分辨率岩石薄片显微图像拼接中容易出现找不到有效特征点而难以实现全景拼接的问

题，并且处理速度较慢。针对上述问题，提出了一种基于改进 GLU‑Net 的岩石薄片显微图像拼接方法。

该方法通过结合改进的相关性计算模块增强全局与局部对应关系，使用特征金字塔网络实现多尺度特

征融合，设计添加了自适应卷积注意力机制优化关键区域注意力，并使用全局与局部解码器获取光流，

最后对图像进行单应性变换实现拼接，构建了一种新的图像拼接网络模型。实验结果表明，与传统图

像拼接算法和其他经典图像拼接网络模型相比，提出的网络表现出更好的拼接效果，在自制数据集拼

接测试中的拼接准确率达到了 86.75%，每组平均配准耗时为 0.394 s，在提高拼接准确率的同时有效平

衡了处理效率。

中图分类号：  TN391    文献标志码：A
引用格式： 向文亮，熊淑华，何海波，等 . 基于改进 GLU‑Net 的岩石薄片显微图像拼接［J］. 数据采集与处理，2026，
41（1）：160 ‑ 173. XIANG Wenliang，XIONG Shuhua，HE Haibo，et al. Image stitching of rock thin sections micro‑
scopic images based on improved GLU‑Net［J］.Journal of Data Acquisition and Processing，2026，41（1）：160‑173.

引   言

在地质学研究中，岩石矿物的偏光特性因晶体结构差异而在各类光环境中呈现出独特的光学表

现［1］。地质学家传统上使用偏光显微镜［2‑3］对制备的岩石薄片［4‑6］进行显微图像［7］采集，这些图像在矿物

微观结构研究［8］、矿物颗粒分类识别［9‑11］中发挥了重要作用。然而，利用偏光显微镜在不同偏光模式和

倍率下的成像，获取的单视域图像虽能揭示局部微观细节，但其局限性在于无法展示岩石薄片的整体

特性。大视域成像虽能呈现岩石薄片的全局信息，却难以捕捉细微结构特征。因此，需要将多张单视

域图像拼接成全幅面高分辨率图像，以实现岩石薄片宏观特征与微观细节的有机统一与综合分析。

图像配准［12］是图像拼接的关键环节。传统配准方法主要基于特征提取［13］和特征匹配［14］算法。

SIFT 算法对尺度、旋转和仿射变换以及光照、噪声具有高度鲁棒性，但需要处理的数据量较大，配准速

度较慢。针对此问题，Wu 等［15］对 SIFT 算法进行了优化，跳过初始尺度空间构建步骤，结合 GLOH 描

述符增强鲁棒性，并引入基于曼哈顿距离的特征筛选及快速样本一致性算法进行误匹配剔除，该方法

在多个栲树林航拍数据集上显著提升了匹配精度与运行效率。陈丽娟等［16］针对太空遥感图像特征稀

疏的问题，结合 Hessian 矩阵与尺度空间提取匹配点，利用 Harris 角点构建特征描述子，并通过

RANSAC 筛选匹配对，估算单应矩阵实现图像拼接。Deb 等［17］针对图像特征匹配中存在的匹配精度不

足与计算资源受限等问题，基于 AKAZE 特征检测框架提出改进方法，将 FREAK 描述子与优化的

KNN‑RANSAC 匹配策略相结合，实现了在尺度变换、模糊及旋转等干扰下的稳健匹配。

基金项目：国家自然科学基金(62071315); 四川省国际科技创新合作项目(2024YFHZ0289)。
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近年来，随着深度学习技术的发展，基于深度学习的图像拼接网络模型逐渐涌现。Sarlin 等［18］在

SuperPoint等局部特征基础上，引入图神经网络与自注意力机制，通过对源图像与目标图像的特征图进

行图结构建模和信息交互，实现端到端关键点匹配，该方法在匹配精度、稳定性以及遮挡和视角变化适

应性方面均显著优于传统算法。Truong 等［19］提出的 GLU‑Net 网络架构，构建了从低分辨到高分辨的

多级稠密匹配框架，具备较高的匹配准确率与鲁棒性，适用于图像拼接、位姿估计和三维重建等多类场

景。Sun 等［20］提出了 LoFTR 网络，该方法在不使用显式关键点的前提下，借助 Transformer 架构直接在

密集特征图上建立图像之间的空间对应关系，采用由粗到细的匹配机制，实现了较高精度和鲁棒性的

图像匹配。Truong 等［21］提出的 PDC‑Net+在密集光流估计中融合概率建模与置信度预测，提升了匹配

精度与鲁棒性，并具备不确定性估计能力。Lindenberger 等［22］提出的 LightGlue 网络，在 SuperGlue 架构

基础上引入了轻量注意力模块与自适应推理机制，可根据图像对匹配难度动态调节推理深度与宽度，

从而实现高精度、高效率的局部特征匹配。Potge 等［23］提出了 XFeat 网络，该方法在保持匹配精度的同

时，显著降低计算开销，通过极简 CNN 架构实现关键点检测、局部描述与匹配细化，并支持稀疏与半稠

密两种模式。

与自然场景图像拼接不同，岩石薄片偏光显微图像具有独特的成像特点，在拼接过程中面临以下

挑战：（1）岩石矿物纹理结构复杂且具有高度重复性，易导致局部特征匹配错误；（2）大量弱纹理或模糊

区域缺乏明显的角点与边缘，导致提取的特征点稀疏且不稳定；（3）不同区域整体外观高度相似，易造

成全局误匹配；（4）高倍显微镜采集产生的大规模高分辨率图像序列对拼接速度提出了高要求。因此，

通用的图像拼接算法在岩石薄片场景下往往表现不佳，需要针对性设计与改进。

本文针对上述挑战，基于深度学习框架提出了一种基于改进 GLU‑Net的岩石薄片显微图像拼接网

络，通过多尺度特征金字塔融合网络提升匹配精度，结合改进的相关性计算模块提升全局与局部匹配

能力，引入自适应卷积注意力机制增强关键区域的特征表达，并进行全局与局部解码估计光流，最后对

图像进行单应性变换实现拼接。实验验证表明，该方法在配准精度和速度上均表现较好，为岩石薄片

显微图像的全景图拼接提供了有效的解决方案。

1 图像采集与数据集制作  

1. 1　岩石薄片序列图像采集　

通过如图 1 所示的岩石薄片图像采集系统采集岩石薄片显微图像。岩石薄片图像采集系统由带有

电动载物台的偏光显微镜、载物台控制器和工业相机组成。

岩石薄片在显微镜下的相机拍摄视域远小于整张薄片的面积，因此通过载物台控制器控制载物台

移动来连续采集多张单视域序列图像，直至采集完整张薄片。通过控制载物台按“Z”字形路径沿 X 和

Y 方向移动来采集岩石薄片不同区域的显微图像。采

集图像时，载物台通过 Z 方向移动对岩石薄片进行聚

焦，以获得清晰的图像。由于需要将这些序列图像拼

接成完整薄片图像，因此采集的每个相邻序列图像之

间都需要存在一定的重叠区域，从而对相邻图像进行

光流估计实现拼接。通过设定载物台沿 X 和 Y 方向的

移动步长来确定重叠区域比例。

1. 2　数据集制作　

为了训练本文的深度学习模型，需要制作用于岩

石薄片图像拼接的数据集。由于真实光流标签难以通

图 1　岩石薄片图像采集系统

Fig.1　Rock thin‑section image acquisition system
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过人工标注获取，因此采用自监督方法生成光流标签以制作数据集，分为 4 个步骤：源图像的获取、图像

单应性变换、图像裁剪和光流标签的生成。

第一步，源图像的获取。使用岩石薄片图像采集系统对不同岩石薄片进行图像采集，共选取 3 000
张分辨率为 2 736×1 824 像素的岩石薄片图像作为原始数据集图像。

第二步，图像单应性变换。为每张源图像随机生成一个 3×3 单应性矩阵。使用生成的单应性矩阵

对源图像进行透视变换，生成对应的目标图像。变换采用双线性插值，确保目标图像分辨率保持

2 736×1 824 像素，避免边界丢失。图 2 展示了 1 张源图像（图 2（a））及其单应性变换生成的目标图像

（图 2（b））。

第三步，图像裁剪。原始数据集图像分辨率较高，将其作为数据集图像数据进行训练运算量过大，

为降低内存需求、减小网络训练数据量从而提升训练效率，对源图像和目标图像进行裁剪，减小图像尺

寸。为使裁剪区域包含代表性的岩石薄片矿物颗粒和纹理，采用中心区域裁剪的方式，裁剪区域为

520×520 像素。图 2（c）是对图 2（a）的裁剪结果，图 2（d）是对图 2（b）的裁剪结果。

第四步，光流标签的生成。光流是图像序列中像素运动的二维矢量场，表示源图像中每个像素在

目标图像中的位移。光流矢量由两个分量组成：x 方向偏移和 y 方向偏移，反映了图像间的空间变换。

通过每个源图像和目标图像对应的单应性矩阵计算光流，从而得到光流标签。具体过程是：首先，创建

520×520 像素的网格坐标 ( x，y )，表示源图像像素位置；然后，应用单应性矩阵变换坐标，得到目标图像

像素位置 ( x′，y′)；最后，计算光流 flow = ( x - x′，y - y′)，并调整为张量格式。

此外，模型训练时还使用了 COCO 数据

集［24］，通过将自制的岩石 COCO 数据集中

的矿物成分目标物融入自制岩石薄片图像，

得到最终的数据集，模拟岩石薄片图像中可

能出现的杂质或外部干扰，增强模型的泛化

能力和推理的鲁棒性。从自制 COCO 数据

集中随机选取图像并缩放为 520×520 像素

分辨率，提取每个图像的边界框和分割掩

码，使用掩码对目标物进行像素级分割，生

成前景图像。背景区域置为透明。如图 3
所示，将提取的 COCO 目标物叠加到岩石薄

片数据集图像上，使用 α 通道进行透明融

合，融合公式如下

图 2　源图像对及其裁剪后的图像对

Fig.2　Source image pair and the corresponding cropped image pair

图 3　训练时融合 COCO 目标物的自制数据集图像

Fig.3　Custom dataset image with COCO objects fused during 
training
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I fused( x，y ) = α ⋅ Iobject( x，y ) + ( 1 - α ) Iback( x，y ) （1）
式中：I fused 为合成数据集图像，Iobject 为目标物图像，Iback 为岩石薄片数据集图像，α 为 α 通道值，范围从

0 到 1。

2 改进 GLU‑Net的岩石薄片图像拼接网络  

基于改进 GLU‑Net的岩石薄片显微图像拼接网络模型整体结构如图 4 所示，主要包括 6 个部分：特

征 提 取 模 块（Visual geometry group，VGG）、多 尺 度 特 征 融 合 模 块（Feature pyramid network for 
multi‑scale feature fusion，FPN）、相关性计算模块（Globally‑optimized correspondence volume， GOCor）、

多尺度卷积注意力机制模块（Convolutional attention mechanism module， CBAM）、解码器与光流估计模

块以及单应性变换与拼接模块。

岩石薄片显微图像拼接的目的是通过光流估计建立两张图像间的精确对应关系以实现对齐。首

先，将两张待拼接的岩石薄片显微图像及其降采样后的两张图像依次输入到 VGG 特征提取模块中，以

获得每张图像的多尺度特征图；然后，将这些特征图输入 FPN 模块进行融合，生成通道数一致的特征金

字塔；随后，通过相关性计算模块 GOCor 计算目标图像和源图像之间的全局和局部相关性，并通过

CBAM 模块进一步增强特征表示；接着，通过解码器预测多分辨率光流并进行精炼和上采样；最后，得

到最终的光流用于匹配点提取，用于对输入图像进行单应性变换实现拼接。改进的 GLU‑Net网络能够

灵活处理不同分辨率的图像对，适用于多种岩石薄片显微图像的拼接任务。

2. 1　多尺度特征融合金字塔网络　

岩石薄片图像通常呈现出复杂纹理、局部非均匀和高噪声的特征。使用 VGG 金字塔从图像中提

取多尺度特征图，这些特征图能够捕捉从低级纹理到高级语义的多样信息。

VGG 金字塔的结构如图 5 所示。VGG 金字塔采用分层架构，每个块由多个 3×3 卷积层组成，后接

ReLU 激活函数，并在块末尾设置单一的最大池化层，从而逐步降低空间维度并增加通道深度。通过较

小的 3×3 卷积核替代较大核，降低了模型参数量。输入图像经过 VGG 特征提取，分别得到 1/4 分辨率

特征图 C1和 1/8 分辨率特征图 C2，通道数分别是 128 和 256。将输入图像降采样为 256×256 像素分辨

图 4　网络整体结构图

Fig.4　Overall network architecture diagram
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率后进行特征提取，分别得到 32×32 像素分辨率特征图 C3和 16×16 像素分辨率特征图 C4，通道数分别

是 256 和 512。

为了充分整合多尺度信息以及应对偏光显微镜采集图像过程中出现的噪声和光照不均，添加多尺

度特征融合模块，对提取的各层特征图进行融

合，增强特征的表达能力。多尺度特征融合模块

如图 6 所示。对提取的 4 层特征图分别使用 1×1
大小的卷积核进行卷积，将通道数统一调整为

256 通道。对第 4 层特征图 C4使用 3×3 卷积进行

平滑得到特征图 F4；对特征图 F4进行双线性插值

上采样后与特征图 C3相加进行融合，再使用 3×3
卷积进行平滑得到特征图 F3，以此类推可得到特

征图 F2 和 F1。通过自上而下与自下而上的路径

结合特征，将高分辨率的空间细节与低分辨率的

高级语义进行融合，生成适合多分辨率处理的特

征图，从而提升匹配精度。

2. 2　相关性计算模块　

得到源图像和目标图像不同分辨率的特征图后，需要计算源图像和目标图像特征之间的相关性，

为后续光流估计提供初始对应关系。改进的特征相关性计算模块 GOCor引入多目标滤波器预测器，通

过结合全局和局部相关性分析，克服传统静态相关性方法的局限性，从而提升匹配精度和鲁棒性。

源图像的特征图 Fs和目标图像的特征图 Ft的尺寸为 H×W×C，其中 C=256。首先将特征图 Ft输

入到滤波器预测器中，计算初始滤波器 ω 0，具体公式如下

ω 0( u，v ) =
P init( )F s，F t ( )u，v

 P init( )F s，F t 2

（2）

式中：P init 为初始化子网络，( u，v )为窗口内的空间偏移，  · 2 表示二维欧几里得距离的 L2 范数。

对 ω 0 进行迭代优化，获取优化滤波器 ω*，更新规则为

ωt + 1 = ωt - η ⋅ ∇ ω L ( ωt，F s，F t ) （3）
式中： η为学习率，∇ 表示求梯度，t为迭代索引，L ( ωt，F s，F t )为损失函数。该损失函数定义为

L ( ωt，F s，F t ) = -τ ( i，j )+ λ||ωt ||22 （4）

图 5　VGG 结构图

Fig.5　VGG structure diagram

图 6　多尺度特征融合模块结构图

Fig.6　Multi‑scale feature fusion module structure diagram
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式中：λ为自适应正则化系数；τ ( i，j )为初始相关性，定义为

τ ( i，j )=∑
u，v

ωt( )u，v ⋅ F t( i + u，j + v ) （5）

将优化滤波器 ω* 与 Ft进行卷积，计算增强的相关性 R，生成对应关系体，计算公式如下

R ( i，j ) = ∑
u，v

ω∗( )u，v ⋅ F t( i + u，j + v ) （6）

式中：R ∈ RH '× W '× ( )2m + 1 × ( )2m + 1 为对应关系体，m 定义搜索范围。

全局 GOCor 专注于计算图像间的全局变换，如平移、旋转或尺度变化，基于较高层特征，以捕捉整

体上下文信息。使用全局 GOCor计算源图像的第 4 层特征图与目标图像的第 4 层特征图之间的全局相

关性。局部 GOCor 侧重于局部区域的细粒度匹配，基于较低层特征，以细化局部边界或纹理对齐。使

用局部 GOCor计算源图像与目标图像第 1、2、3 层特征图之间的局部相关性。

2. 3　自适应卷积注意力模块　

岩石薄片显微图像在拼接过程中可能出现

岩石颗粒关键区域和无关背景无法区分的情况，

因 此 设 计 添 加 了 自 适 应 卷 积 注 意 力 模 块

（CBAM），通过对通道和空间两个维度施加自适

应的注意力权重，增强网络对重要特征的关注，

同时抑制不相关的背景噪声。自适应卷积注意

力模块结构如图 7 所示。

首先对输入的对应关系体  R ( i，j ) 进行自适

应步长全局平均池化得到 R1 × 1 × B × C，其中 B 为

批次大小，C 为通道数，H 和 W 分别为高度和宽

度。然后通过 1×1 卷积和 ReLU 函数激活降维至 C/16，再使用 1×1 卷积和 Sigmoid 函数激活重塑为

R1 × 1 × B × C，并与 R ( i，j )逐元素相乘得到 RSE( i，j )。对 RSE( i，j )进行最大池化得到 RM( i，j )，进行平均池

化得到 RA( i，j )，RM( i，j )和  RM( i，j )的尺寸都为 H×W×B×1，沿通道维度进行拼接得到 RH × W × B × 2；再

通过 3×3 卷积压缩为 RH × W × B × 1，并施加 Sigmoid 激活后与 RSE( i，j )逐元素相乘，得到最终的对应关系

体 REA( i，j )。

2. 4　解码器与光流估计　

映射解码器由 5 个卷积块和 1 个输出层组成，是全局解码器。将第 4 层特征图的对应关系体 R4输

入到映射解码器中，R4依次通过 5 个 3×3 卷积块，通道数分别为 128、128、96、64 和 32，逐层提取特征并

应用 ReLU 激活；最后，将最终的 32 通道特征映射到 2 通道，再反归一化并减去网格坐标转换为初始光

流 flow4，用于后续多尺度光流估计的起点。上述解码过程为

m 4 = M map( R 4 ) （7）
flow4( d ) = m 4( d ) - d （8）

式中：Mmap为映射解码器，m 4 为每个像素对应的归一化匹配坐标；d为像素在特征图中的归一化坐标，

m 4( d )为该点在另一张特征图中的匹配位置坐标，flow4( d )为输出的光流，表示从当前位置指向其匹配

点的偏移。

第 1、2、3 层特征图使用光流解码器进行解码，光流解码器由 5 个卷积块和 1 个光流预测层组成，是

局部解码器。使用了动态步长调整策略，即根据前一层光流预测误差自适应调整本层卷积步长，使多

图 7　自适应卷积注意力模块结构图

Fig.7　Adaptive convolutional attention module structure 
diagram
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尺度光流估计更加稳定。将对应关系体 Rl ( l = 3，2，1 )输入到光流解码器中，光流解码器首先接收对应

关系体 Rl ( l = 3，2，1 )和上一层光流，将两者沿通道维度拼接生成初始输入特征；随后，该特征依次通过

5 个 3×3 卷积块，每层卷积后与输入特征通过 DenseNet 连接沿通道维度拼接，累积特征信息并应用

LeakyReLU 函数激活；最后，将 32 通道特征映射到 2 通道，生成光流增量 ∆flow l，该增量与上采样的上

一层光流 ∆flow l + 1 相加得到当前层光流 flow l，用于多尺度光流估计的逐步精炼。上述解码过程为

Δflow l = M l( Rl，up( flow l + 1 ) )       l = 3，2，1 （9）
flow l = Δflow l + up( flow l + 1 )       l = 3，2，1 （10）

式中：M l 为光流解码器，up ( · ) 表示上采样。

得到的第 1 层特征图对应的光流 flow1 经过上采样后即获得最终预测的光流 flow。从光流场中选

取具有高置信度的对应点作为匹配点对集合。

2. 5　图像单应性变换与拼接　

为实现图像的几何对齐，通过单应性变换完成图像的配准与拼接。单应性矩阵H为

H=
é

ë

ê

ê
êê
ê
ê ù

û

ú

úú
ú
ú

úh11 h12 h13

h21 h22 h23

h31 h32 1
（11）

式中：h11、 h12、h21、h22控制旋转、缩放、剪切等线性变换，h13、 h23控制平移变换，h31、h32 控制透视畸变。

由于岩石薄片显微序列图像是通过载物台水平面移动采集得到，故图像间可以忽略旋转、缩放等

变形，只考虑平移变换，从而减小计算量。单应性矩阵可简化为

H 1 =
é

ë

ê

ê
êê
ê
ê ù

û

ú

úú
ú
ú

ú1 0 tx

0 1 ty

0 0 1
（12）

式中：tx 和  ty 分别表示 X 方向和 Y 方向的平移量。

为估计单应性矩阵，采用随机抽样一致性算法（Random sample consensus， RANSAC）对其进行优

化。从匹配点对集合中随机选取至少 4 对点，计算初始单应性矩阵。对所有匹配点计算内点，定义内点

为满足重投影误差小于阈值（5 像素）的点。重复上述过程若干次，选择对应内点最多的单应性矩阵作

为最终的单应性矩阵。使用估计的单应性矩阵对图像进行单应性变换实现拼接。

为了保证全薄片拼接图的完整性，对于拼接失败的单视域图像，使用平均位移补偿法进行补偿拼

接。平均位移补偿法定义为

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

x̄ = 1
i ∑

k = 1

i - 1
xk      i ∈ [ 1，m ]

ȳ = 1
j ∑

l = 1

j - 1

yl      j ∈ [ 1，n ]
（13）

式中：x̄ 表示序列图像 X 方向匹配位移均值，ȳ 表示序列图像 Y 方向匹配位移均值，i 表示当前拼接的序

列图像所在列数，j表示当前拼接的序列图像所在行数，m 和 n分别表示全视域图像包含的单视域图像的

行数和列数。如果当前序列图拼接失败，则使用 x̄和 ȳ作为单应性矩阵中的平移参数对该图像进行拼接。

3 实验结果分析与讨论  

3. 1　实验环境　

本文的模型训练和图像拼接实验在 Linux 操作系统下进行。服务器的 CPU 为 Intel（R） Core（TM） 
i7-9700CPU@3.00 GHz×8，内存为 32 GB；GPU 为 NVIDIA GeForce RTX 2080 Ti，显存为 11 GB。
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3. 2　评价指标　

为了有效评估不同算法和模型对岩石薄片图像的拼接效果，采用以下评价指标：

（1） 平均端点误差（Average end‑point error，AEPE）
AEPE［25］是评估光流估计或图像对应关系质量的一个指标，表示预测点位置与真实点位置之间欧

几里得距离的平均值。在密集匹配和光流估计任务中，AEPE 反映了整体预测偏差大小，其值越小，光

流估计越准确，表明算法（模型）对图像的拼接效果越好；反之亦然。AEPE 定义为

AEPE = 1
N ∑

k = 1

N

||X ′k - X k ||2 （14）

式中：N 表示参与计算的有效像素数，X k = ( xk，yk )表示目标图像中的第 k 个像素位置，X 'k = ( x 'k，y 'k ) 表
示模型预测的该像素在源图像中的对应位置， · 2 表示二维欧几里得距离的 L2 范数。

（2） 正确关键点百分比（Percentage of correct keypoints， PCK）　

PCK［25］是评估预测点质量的指标，表示估计预测点位置与真实点位置之间的欧几里得距离小于某

一阈值 δ 的百分比。PCK 是一个基于误差范围的精度指标，用于衡量预测关键点的正确率，其值越大，

预测正确的关键点越多，表明算法（模型）对图像的拼接效果越好；反之亦然。其定义为

PCK ( δ )= 1
N ∑

k = 1

N

Φ ( ||X ′k - X k ||2 ≤ δ ) （15）

式中：Φ ( · )为指示函数，成立为 1，不成立为 0；δ 为误差容忍阈值，比如 1、3 和 5 像素。

（3） 准确率（Accuracy）
准确率［26］是指拼接成功的图像组数占拼接图像组总数的百分比，其值越高，表明拼接成功的图像

越多，算法（模型）对图像的拼接效果越好；反之亦然。判断图像是否拼接成功是通过结合客观参数评

估和主观观测评估的方法来判定的。首先使用客观参数评估：从图像匹配对的光流中获取匹配点，并

去除外点，若图像匹配对的匹配点数量不少于 4，则进行图像单应性变换和拼接；反之则认为该图像匹

配对拼接失败。为避免误匹配情况，对客观参数评估后的拼接结果图进行主观观测，即通过视觉观察

拼接图，如果未出现错位和拼接缝，则判定为拼接成功；反之则判定为拼接失败。

（4） 单组平均配准耗时（Average registration time per group， ARTG）

ARTG［27］表示算法（模型）在每组图像配准所需的平均时间，单位为 s，由所有测试图像组的配准时

间之和除以图像组数计算得到。该指标数值越小，代表配准效率越高。

3. 3　实验结果与分析　

3. 3. 1　对比实验　

为了测试本文搭建的模型的性能，分别从 12 张岩石薄片采集序列图像制作数据集，分辨率均为

1 368×912 像素，并随机选取 2 000 组作为测试集进行拼接测试，每组图像包含 1 张基准图像和 1 张待拼

接图像。

表 1 中的实验组别 1~4展示了近年来一些具有代表性的深度学习图像拼接网络的拼接效果，可以看

到，PDC‑Net 网络的各项性能指标表现较好，其中准确率达到了 82.15%，单组平均配准耗时为 0.407 s。
表 1 中的实验组别 5~9 展示了 5 个经典传统图像配准算法的拼接效果，可以看到，SIFT 算法准确率较

高，达到了 80.30%，但耗时较长，单组平均配准耗时为 0.619 s。相较于 PDC‑Net，本文网络的 AEPE 降

低了约 24.37%，PCK‑1px 和 PCK‑5px 相较 PDC‑Net 分别提升了约 8.92% 和 5.09%。本文网络相对

SIFT 算法 AEPE 降低了约 44.06%，PCK‑1px 和 PCK‑5px 分别提升了 17.75% 和 10.84%。本文网络的

准确率相比 PDC‑Net 网络提升了 4.60%，相比 SIFT 算法提升了 6.45%，单组平均配准耗时为 0.394 s，
配准速度比 PDC‑Net稍快，相比 SIFT 算法配准速度得到显著提升；而 ORB 算法的配准速度虽然最快，
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但其准确率最低。从表 1 可以看出，本文提出的网络模型拼接准确率最高，同时兼顾了配准时间，相较

于其他算法和模型具有更佳的图像拼接效果。

图 8 分别展示了 GLU‑Net 网络、PDC‑Net 网络、SIFT 算法以及本文网络对 2 组岩石薄片显微图像

的配准结果和拼接结果，其中每组图像对应的左图为配准结果，右图为拼接结果。可以看到，本文网

表 1　本文网络与其他图像拼接网络和算法的性能指标对比

Table 1　Comparison of performance metrics between the proposed network and other image stitching 
networks and algorithms

实验组别

1
2
3
4
5
6
7
8
9

10

算法/网络

LoFTR
PDC‑Net
LightGlue

XFeat
SIFT
SURF
BRISK

AKAZE
ORB
Ours

AEPE↓
20.83
11.08
11.90
13.41
14.98
17.29
30.36
26.83
51.04
8.38

PCK‑1px/%↑
49.72
66.97
64.22
61.16
58.14
51.35
26.23
31.82

8.73
75.89

PCK‑5px/%↑
68.53
82.94
81.68
79.76
77.19
75.38
58.33
62.21
32.30
88.03

Accuracy/%↑
74.10
82.15
81.50
80.40
80.30
78.25
62.70
70.05
38.45
86.75

ARTG/s↓
0.316
0.407
0.392
0.323
0.619
0.590
1.614
0.492
0.240

0.394

图 8　不同算法和网络模型对源图像和目标图像的配准结果和拼接结果对比

Fig.8　Comparison of registration and stitching results for source and target images using different algorithms and net‑
work models
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络的配准结果图具有更多正确的匹配点连线，而且拼接结果图没有出现拼接错位现象，拼接效果

更好。

3. 3. 2　消融实验　

消融实验的结果如表 2 所示。在基础模型 GLU‑Net上添加 GOCor，然后在此基础上分别添加 FPN
和 CBAM，同时添加 FPN 和 CBAM 则构成了本文网络。可以看到，随着模型的逐步改进，虽然 ARTG
在缓慢增长，但是其他指标在逐步优化。相较于 GLU‑Net基础网络，本文网络的 AEPE 从 23.95 下降至

8.38，表明显著提升了模型光流估计的准确性；本文网络的 PCK‑1px 和 PCK‑5px 分别从初始的 47.03%
和 67.20% 提升至 75.89% 和 88.03%，表明提取的正确匹配点占比显著提升。同时，本文网络的准确率

在逐步提高，达到了 86.75%，与初始 GLU‑Net 网络相比提高了 13.45%，模型的图像拼接性能得到有效

提升。

3. 3. 3　泛化性实验　

在显微镜对岩石薄片进行图像采集的过程中，由于机械抖动、光照变化等原因可能会导致采集的

图像出现微小的旋转和尺度变换。为了验证本文网络的泛化能力，使用本文网络及原单应性矩阵对复

杂几何变换下的岩石薄片显微图像和跨场景非岩石薄片图像进行拼接测试。

（1） 复杂几何变换下的岩石薄片显微图像拼接　

制作 500 组具有旋转、缩放和投影变换的自制数据集图像对本文网络进行拼接测试。

表 3 给出了本文网络对复杂几何变换下岩石薄片显微图像拼接的评估结果，可以看到，拼接准确率

达到 81.80%，表明本文网络能够较好地适应具有不同几何变换的岩石薄片图像的拼接任务。仅当图像

存在较大幅度的复杂几何变换且大面积区域纹理高度相似时，才可能出现拼接失败。图 9 展示了 2 组

岩石薄片显微图像成功配准和拼接的结果。

（2） 跨场景图像拼接　

在数据集 MegaDepth 中随机选取 500 组图像作为测试集对本文网络进行拼接测试，评估结果如

表 4 所示，可以看到，拼接准确率达到了 80.40%，表明本文网络对具有复杂几何变换的非岩石薄片图像

拼接任务具有较好的适应能力。图 10展示了 2组不同场景的非岩石薄片图像成功配准和拼接的结果。

表 2　消融实验性能指标对比

Table 2　Comparison of performance metrics in ablation experiments

实验组别

1
2
3
4
5

算法/网络

GLU‑Net
GLU‑Net+GOCor

GLU‑Net+GOCor+FPN
GLU‑Net+GOCor+CBAM

Ours

AEPE↓
23.95
18.46
13.73
11.36
8.38

PCK‑1px/%↑
47.03
51.72
63.04
65.13
75.89

PCK‑5px/%↑
67.20
71.76
78.39
81.28
88.03

Accuracy/%↑
73.30
76.15
79.80
80.55
86.75

ARTG/s↓
0.301

0.320
0.372
0.387
0.394

表 3　复杂几何变换下岩石薄片显微图像的拼接效果评估

Table 3　Evaluation of stitching performance on thin‑section microscopic images under complex geometric 
transformations

实验组别

1
网络

Ours
AEPE↓

11.54
PCK‑1px/%↑

65.72
PCK‑5px/%↑

82.62
Accuracy/%↑

81.80
ARTG/s↓

0.419
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3. 3. 4　全薄片图像拼接　

将 1.1 节中如图 1 所示的岩石薄片序列图像采集顺序作为序列图像拼接顺序，使用本文网络对

采集的 12 张完整岩石薄片的序列图像进行拼接。其中的 3 张岩石薄片全幅面拼接图如图 11 所示，

图 9　本文网络对复杂几何变换下的岩石薄片显微图像的配准和拼接结果

Fig.9　Registration and stitching results of rock thin‑section microscopic images under complex geometric transforma‑
tions by the proposed network

表 4　跨场景图像的拼接效果评估

Table 4　Evaluation of cross‑scene image stitching performance

实验组别

1
网络

Ours
AEPE↓

13.79
PCK‑1px/%↑

59.64
PCK‑5px/%↑

78.03
Accuracy/%↑

80.40
ARTG/s↓

0.414

图 10　本文网络对跨场景非岩石薄片图像的配准和拼接结果

Fig.10　Registration and stitching results of non‑rock thin‑section images across different scenes by the proposed network

图 11　完整岩石薄片拼接图像

Fig.11　Stitched image of complete rock thin‑section
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分别由 432、330、528 张序列图像拼接而成，分辨率分别为 24 562×24 620、12 147×10 732和 30 324×
24 250 像素。

4 结束语

针对传统特征提取与匹配算法在高分辨率岩石薄片偏光显微图像拼接中存在局部纹理复杂、全

局相似度高、模糊区域无特征点导致全薄片图像拼接失败以及配准速度慢的问题，提出了一种基于改

进 GLU‑Net 的岩石薄片显微图像拼接方法。该方法在使用改进 GOCor 模块增强全局和局部对应关

系计算的基础上，引入特征金字塔结构实现多尺度特征的融合，设计添加了自适应卷积注意力机制优

化关键区域特征的注意力分配，然后通过全局映射解码器和局部光流解码器预测光流，最后基于获取

的光流对图像进行单应性变换实现拼接，并且使用平均位移补偿法确保拼接出完整的岩石薄片图像，

构建了改进的岩石薄片显微图像拼接网络架构。实验结果表明，与传统配准算法以及近年一些具有

代表性的深度学习图像拼接网络相比，本文提出的网络具有拼接准确率高的优势，并且实现了配准速

度与精度的平衡，具有在地质学研究中实时拼接的应用价值。本文网络的局限性在于，当图像存在复

杂几何变换且大面积区域纹理浅弱并高度相似时，可能会出现拼接错位。后续研究将扩充包含复杂

几何变换与复杂纹理特征的数据集，以进一步提升模型的拼接准确率。此外，可进一步优化特征提取

与匹配策略，结合多类型图像特征并在多尺度层次上进行训练，从而进一步增强模型的拼接性能与泛化

能力。
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向文亮  等：基于改进 GLU‑Net 的岩石薄片显微图像拼接

Image Stitching of Rock Thin Sections Microscopic Images Based on Improved 
GLU‑Net

XIANG　Wenliang1， XIONG　Shuhua1， HE　Haibo2， TENG　Qizhi1， HE　Xiaohai1*

(1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China; 2. Chengdu Xitu Technology 
Co. Ltd., Chengdu 610024, China)

Abstract： Rock thin-section microscopic images frequently exhibit complex local textures， blurriness， and 
high noise levels， posing significant challenges for traditional feature extraction and matching algorithms. 
These methods often fail to identify effective feature points in high-resolution rock thin-section images， 
hindering the realization of panoramic stitching while also resulting in slow processing speeds. To address 
the aforementioned issues， a rock thin- section microscopic image stitching method based on an improved 
GLU-Net has been proposed. This method integrates an enhanced correlation computation module to 
improve global and local correspondence， employs a feature pyramid network for multi-scale feature 
fusion， incorporates a designed adaptive convolutional attention mechanism to optimize attention to key 
regions， utilizes global and local decoders to obtain optical flow， and applies homography transformation 
for image stitching， thereby constructing a novel image stitching network model. Experimental results 
demonstrate that， compared to traditional image stitching algorithms and other classical image stitching 
network models， the proposed network achieves superior stitching performance. In stitching tests on a self-
constructed dataset， a stitching accuracy of 86.75% has been attained with an average registration time of 
0.394 s per pair， effectively balancing enhanced accuracy with processing efficiency.
Highlights：
1. A fusion module， feature pyramid network for multi-scale feature fusion， and an improved correlation 
module， globally-optimized correspondence volume， are introduced to enhance cross-scale representation 
and global-local correspondence modeling for weak and repetitive textures.
2. A multi-scale convolutional attention mechanism module is designed and embedded to adaptively 
modulate spatial and channel attention， suppress noise-dominated responses， and highlight discriminative 
structures.
3. A coarse-to-fine optical-flow estimation and stitching framework is built with a global mapping decoder 
and local optical-flow decoders. Alignment is completed via homography-based warping， and an average-

displacement compensation strategy handles locally mismatched tiles to ensure continuity and completeness 
of full thin-section mosaicking.
4. Experiments show the proposed method improves stitching accuracy and efficiency on a self-built dataset 
and under complex geometric transformations and cross-dataset evaluations， outperforming traditional 
stitching algorithms and representative deep learning stitching models.
Key words： rock thin-section image; feature fusion; convolutional attention mechanism; optical flow 
estimation;image stitching
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