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Table1 Comparison of performance metrics between the proposed network and other image stitching
networks and algorithms

S5 2H ) Bk /MY AEPEY PCK-1px/% A PCK-5px/ % A Accuracy/ % A ARTG/s v

1 LoFTR 20.83 49.72 68.53 74.10 0.316
2 PDC-Net 11.08 66.97 82.94 82.15 0.407
3 LightGlue 11.90 64.22 81.68 81.50 0.392
4 XFeat 13.41 61.16 79.76 80.40 0.323
5) SIFT 14.98 58.14 77.19 80.30 0.619
6 SURF 17.29 51.35 75.38 78.25 0.590
7 BRISK 30.36 26.23 58.33 62.70 1.614
8 AKAZE 26.83 31.82 62.21 70.05 0.492
9 ORB 51.04 8.73 32.30 38.45 0.240
10 Ours 8.38 75.89 88.03 86.75 0.394
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(a) GLU—NetIW?
(a) GLU-Net

i) '
(b) PDC-Net[ 4%
(b) PDC-Net

i
U
(d) A3CRI%%
(d) Ours
P8 AN [) B 3 R ) 2% A5 7 6 35 PTG L B PR 11 TS o4 235 2L R BF 1 285 2R X L
Fig.8 Comparison of registration and stitching results for source and target images using different algorithms and net-

work models
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Table 2 Comparison of performance metrics in ablation experiments

2 5 1 5 ERTA T ES AEPE Y PCK-1px/% A PCK-5px/% A Accuracy/% » ARTG/s ¥
1 GLU-Net 23.95 47.03 67.20 73.30 0.301
2 GLU-Net+GOCor 18.46 51.72 71.76 76.15 0.320
3 GLU-Net+GOCor+FPN  13.73 63.04 78.39 79.80 0.372
4 GLU-Net+GOCor+CBAM  11.36 65.13 81.28 80.55 0.387
5 Ours 8.38 75.89 88.03 86.75 0.394
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Table 3 Evaluation of stitching performance on thin-section microscopic images under complex geometric

transformations
Sz 86 44 B EES AEPE y PCK-1px/% A PCK-5px/% 4 Accuracy/ % 4 ARTG/s v
1 Ours 11.54 65.72 82.62 81.80 0.419

(2) By G Ph
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‘

Source image Target image Registration result ) Stitching result
PO AR SCI 26 0 52 e T AR] A8 46T 1) 3 A i A B R 4R ) TG 7 D e 45
Fig.9 Registration and stitching results of rock thin-section microscopic images under complex geometric transforma-
tions by the proposed network
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Table 4 Evaluation of cross-scene image stitching performance

S 2H 5 % £ AEPE v PCK-1px/% 4 PCK-5px/ % A Accuracy/ % 4 ARTG/s v
1 Ours 13.79 59.64 78.03 80.40 0.414

Source image

b

|
h!

Group 2

Source imagej Tar;get iﬁlage 4 Registf;iion result 7 Stitching r;ﬁlt
P10 ARSI 2% 00 15 37 S5t A 2 A0 1 TRTAR O TG A A0 42 25 2R
Fig.10 Registration and stitching results of non-rock thin-section images across different scenes by the proposed network
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(2) SEEERWE A DFEI 1 (b) SER AW BREEIA 2 (o) SEEERIWE PHER 3

(a) Complete thin-section stitching image 1~ (b) Complete thin-section stitching image 2 (c) Complete thin-section stitching image 3
K11 se#E A BrE R %

Fig.11 Stitched image of complete rock thin-section
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Image Stitching of Rock Thin Sections Microscopic Images Based on Improved
GLU-Net

XIANG Wenliang', XIONG Shuhua', HE Haibo’, TENG Qizhi', HE Xiaohai"

(1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China; 2. Chengdu Xitu Technology
Co. Ltd., Chengdu 610024, China)

Abstract: Rock thin-section microscopic images frequently exhibit complex local textures, blurriness, and
high noise levels, posing significant challenges for traditional feature extraction and matching algorithms.
These methods often fail to identify effective feature points in high-resolution rock thin-section images,
hindering the realization of panoramic stitching while also resulting in slow processing speeds. To address
the aforementioned issues, a rock thin- section microscopic image stitching method based on an improved
GLU-Net has been proposed. This method integrates an enhanced correlation computation module to
improve global and local correspondence, employs a feature pyramid network for multi-scale feature
fusion, incorporates a designed adaptive convolutional attention mechanism to optimize attention to key
regions, utilizes global and local decoders to obtain optical flow, and applies homography transformation
for image stitching, thereby constructing a novel image stitching network model. Experimental results
demonstrate that, compared to traditional image stitching algorithms and other classical image stitching
network models, the proposed network achieves superior stitching performance. In stitching tests on a self-
constructed dataset, a stitching accuracy of 86.75% has been attained with an average registration time of
0.394 s per pair, effectively balancing enhanced accuracy with processing efficiency.

Highlights:

1. A fusion module, feature pyramid network for multi-scale feature fusion, and an improved correlation
module, globally-optimized correspondence volume, are introduced to enhance cross-scale representation
and global-local correspondence modeling for weak and repetitive textures.

2. A multi-scale convolutional attention mechanism module is designed and embedded to adaptively
modulate spatial and channel attention, suppress noise-dominated responses, and highlight discriminative
structures.

3. A coarse-to-fine optical-flow estimation and stitching framework is built with a global mapping decoder
and local optical-flow decoders. Alignment is completed via homography-based warping, and an average-
displacement compensation strategy handles locally mismatched tiles to ensure continuity and completeness
of full thin-section mosaicking.

4. Experiments show the proposed method improves stitching accuracy and efficiency on a self-built dataset
and under complex geometric transformations and cross-dataset evaluations, outperforming traditional
stitching algorithms and representative deep learning stitching models.

Key words: rock thin-section image; feature fusion; convolutional attention mechanism; optical flow

estimation;image stitching
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