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Fig.3 Visualization examples of the instance segmentation results on the NWPU VHR-10 dataset
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Fig.4 Visualization results on the iSAID-mini dataset
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Fig.5 Examples of visualization segmentation results for other instances such as playgrounds, baseball fields, ships,

bridges, etc
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Two-Stage Remote Sensing Object Instance Segmentation Based on Harmonic Func-

tion Theory

LI Zekun, SHI Zhenwei, ZOU Zhengxia
(School of Astronautics, Beihang University, Beijing 100191, China)

Abstract: Remote-sensing instance segmentation often suffers from ambiguous object boundaries and
cluttered backgrounds, while adding heavy mask heads can increase computational cost and reduce
deployment flexibility. This paper aims to develop a fast, accurate, and detector-agnostic mask-generation
scheme that can be integrated into existing detection pipelines with minimal engineering overhead and
without extra training. We propose a two-stage framework that couples a replaceable object detector (e.g.,
YOLOV10 or DINO) with a plug-and-play harmonic background modelling (HBM) module. For each
detected bounding box, HBM treats the local background as a harmonic function and reconstructs it by
least-squares fitting of a truncated harmonic-polynomial basis. Boundary constraints are formed by sampling
pixel values along the bounding-box boundary, and the coefficients are solved efficiently via the Moore-
Penrose pseudoinverse. The foreground mask is then derived from the channel-wise residual between the
original image and the reconstructed background, followed by a contrast-enhancing nonlinearity, Otsu
thresholding, and connected-component filtering to suppress spurious fragments. The overall pipeline is
fully decoupled from the detector: the detector is not modified or retrained, and the additional computation
mainly comes from solving a small least-squares problem per proposal rather than processing full-resolution
feature maps with a learned segmentation head. Extensive experiments on NWPU VHR-10 and iSAID-
mini datasets demonstrate consistent gains in both box and mask metrics, while maintaining high
throughput. With DINO as the proposal generator, DINO+HBM achieves AP-Box and AP-Mask of
69.3% and 66.3% on NWPU VHR-10 and reaches AP-Mask-50 of 92.1%, improving the previous best
result by 2.5 percentage points. On iSAID-mini, DINO+HBM obtains AP-Box and AP-Mask of 55.3%
and 42.3% with AP-Mask-50 and AP-Mask-75 of 72.1% and 53.3%, showing clear benefits under more
complex scenes. Ablation studies further verify the roles of truncation order, constraint-point number, and
sampling strategy, and indicate that bounding-box boundary sampling is more stable than random sampling
for background regression and mask extraction without sacrificing speed. The proposed training-free
harmonic background suppression provides an efficient way to obtain boundary-faithful instance masks in
remote-sensing images and offers a practical, modular add-on to detector-based pipelines when rapid
inference and easy deployment are required.

Highlights:

1.A training-free, plug-and-play harmonic background modelling (HBM) module is introduced to generate
instance masks from detector proposals without modifying the detector.

2. Local background reconstruction is cast as a Dirichlet-type harmonic regression problem and solved
efficiently via a truncated harmonic-polynomial basis and least-squares fitting under boundary constraints.
Key words: instance segmentation; background modelling; harmonic polynomials; Dirichlet problem;

remote sensing imagery
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