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摘 要： 针对电动出租车充电设施选址中存在的空间分布失衡与利用率低下问题，本文提出一种融合

Epsilon 约 束 与 模 糊 数 学 规 划 的 多 目 标 粒 子 群 优 化（Fuzzy mathematical programming based particle 
swarm optimization， FMPPSO）算法。通过构建涵盖土地成本、接客率及电池损耗的多约束选址模型，

设计了基于模糊隶属度函数的自适应目标权重分配策略，解决传统进化算法在多目标优化中的早熟收敛

难题。引入 Epsilon 约束机制，动态平衡收敛性与解集分布性，生成高质量 Pareto 前沿解集。最后通过仿

真实验与对比分析验证 FMPPSO 算法在求解电动出租车充电设施选址问题上的有效性。
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引  　言

近年来，电动出租车的数量急剧增加，充电基础设施建设的需求也日益增大，但目前充电站等基础

设施的建设还不够完善［1⁃2］，充电站选址不合理性导致其利用率低。与私人电动汽车可自主安排充电节

奏相比，电动出租车因其运营需求受限于城市公共充电桩的选址，因此制定科学合理的充电设施选址

方案，是推动电动出租车普及和发展的重要前提。

目前，国内外针对电动汽车的充电设施选址规划已经展开了很多研究。文献［3］通过全球定位系

统（Global positioning system， GPS）数据挖掘和 K⁃means 聚类算法，结合成本优化和负荷分析求解电动

出租车充电桩的选址问题。文献［4］利用地理信息系统（Geographic information system， GIS）技术对研

究区域进行初步分析并筛选出适合建设充电站的区域，然后通过建立多准则决策评价体系结合模糊

DEMATEL 方法确定各评价准则的权重，再利用模糊 MULTIMOORA 方法对潜在位置进行排序确定

最优的充电站选址。文献［5］通过 BN⁃BWM 模型确定决策指标的权重，利用 GIS 进行空间分析和叠加

分析，以确定合适的充电站位置，并采用 TOPSIS 方法对候选站点进行排序。然而，这些方法依赖于规

则设定和加权决策，易受主观因素影响，难以在多目标冲突的情况下找到全局最优解。此外，在高维复

杂优化问题中，多准则决策方法计算量较大，难以适用于大规模城市的电动汽车充电站选址。
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现有研究普遍引入启发式优化算法以应对充电设施选址问题中全局优化能力不足和计算效率低

下的挑战。文献［6⁃8］基于多源异构数据分析、车流量热力图及核密度估计等手段，通过构建多目标优

化模型并对遗传算法、免疫遗传算法等方法进行改进从而求解，在提升复杂多目标问题求解效率方面

取得了积极进展。然而，这类启发式方法仍面临参数设置复杂、易受初始解影响和收敛速度较慢等局

限性。为了进一步提高优化性能，文献［9⁃11］对粒子群优化（Particle swarm optimization， PSO）算法进

行了多种改进，如结合深度学习调整搜索边界、引入动态偏好策略更新粒子位置、融入混沌模拟退火机

制等，以增强收敛性与全局搜索能力。现有方法在充电站选址问题中取得了有益探索，但在面对大规

模问题时，仍存在收敛速度慢、易陷入局部最优等问题［12⁃13］。如何在保证解集多样性和全局最优性的同

时进一步提升算法收敛效率，仍然是当前需要突破的研究难题。

针对以上问题，本文提出一种基于模糊数学规划的高级粒子群优化（Fuzzy mathematical program ⁃
ming based particle swarm optimization， FMPPSO）算法，解决电动出租车充电设施选址中的多目标优

化难题。传统启发式算法在处理大规模选址问题时，因多目标冲突和复杂搜索空间而出现早熟收敛，

导致解的质量下降，影响充电设施布局的合理性与系统整体性能［14］。本文方法通过引入模糊数学规划

与动态约束机制，提升了解的多样性和全局最优性，主要贡献包括：

（1）构建了一个综合考虑建设成本、出租车充电等待时间和电池损耗的多目标优化模型，能够更加

准确地刻画充电站选址问题中的关键因素，并通过 Pareto 最优解集寻求合理的折衷解。

（2）提出了一种基于模糊数学规划的高级粒子群优化算法，通过构造模糊隶属度函数并结合 Epsi⁃
lon 约束法对原问题进行转换，实现对目标的动态调整，从而优化搜索过程，提高收敛速度和求解稳定

性，提升最终选址方案的整体优化效果。

（3）进行了仿真实验验证，并与该领域最新研究中的几个先进算法在目标值优化和收敛性上进行

对比，结果表明 FMPPSO 算法在收敛速度、优化精度和解的多样性方面均优于其他算法，在最终收敛

目标值上提升了约 3.8%。

1 相关工作  

1. 1　电动汽车充电设施选址研究　

就公共充电基础设施的数量而言，中国拥有最多的公共电动汽车车充电设施，因此确定合理的充

电设施选址，实施适当的模型和有效的算法［15⁃17］对于更顺利地推动电动汽车的使用至关重要［18］。文献

［6］通过分析多源异构数据来预测电动汽车的充电需求，并在此基础上建立多目标优化模型，最后通过

改进遗传算法进行求解。文献［7］等通过车流量热力图分析电动出租车的时空分布特征，确定充电站

的选址和容量需求，提出了一种综合的协调规划模型并采用免疫遗传算法求解。文献［8］通过核密度

分析来判断充电需求分布，以最大化电动汽车用户的满意度和用户充电便利性为目标构建模型，并采

用改进的免疫算法来求解该模型。相比较于数据挖掘和多准则决策等方法，启发式算法在复杂多目标

优化问题中计算效率更高，适用于大规模优化问题。然而，部分启发式算法（如遗传算法、免疫算法）仍

然存在一定的缺陷，例如参数设置较为复杂、易受初始解影响、收敛速度较慢等。梁迪等［19］通过在鲸鱼

算法中引入余弦递减策略对收敛因子进行非线性调整，改进后的算法在迭代过程中能够更精确地找到

稳定状态下的极值点，提高了优化效果。黄志红等［20］建立了考虑电池损耗的电动物流汽车充电设施选

址与充电策略协同优化问题的整数规划模型，提出一种自适应大邻域搜索的混合启发式算法对电动物

流汽车充电设施选址与充电策略协同优化问题进行求解。郭茂祖等［21］提出了一种基于空间语义和个

体活动模式的城市充电站选址方法，利用无监督学习对未覆盖的兴趣点进行聚类以确定新建充电站数

量，并结合受约束的双存档进化算法求解多目标优化模型。Jamatia 等［22］通过在 IEEE 33 总线测试系统
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上的模拟，采用共生生物搜索（Symbiotic organisms search， SOS）算法确定充电站和分布式电源的最佳

位置以减少配电网功率损耗并改善电压分布。Li 等［23］在传统鲸鱼算法中引入混沌映射和逆向学习机

制，提出了基于混合策略改进的鲸鱼优化算法求解电动汽车充电站的选址优化问题。

针对电动汽车充电设施选址问题，现有方法虽然作出了贡献，但大部分方法仍然面临计算效率低、

收敛速度慢和收敛精度不高的问题。部分研究对鲸鱼算法进行了改进，通过引入余弦递减策略［19］或者

混沌映射和逆向学习机制［23］来增强算法的全局搜索能力，但是鲸鱼算法在电动汽车充电站选址这种高

维复杂优化问题中存在计算复杂度高的问题［24］。另外，混沌映射的初值敏感性会导致算法在不同问题

中的稳定性降低，从而影响最优解的可靠性。相较于自适应大邻域搜索算法［20］和双存档进化算法［21］，

FMPPSO 算法通过 Epsilon 约束法将问题进行转换，能够在更少的迭代次数内收敛到最优解，从而节省

计算时间。

另外，现有研究在处理多个优化目标时，使用的多为权重法，即为各个目标函数分配权重组成一个

加权的单目标函数进行优化，该方法不仅具有较大的偶然性，还会对算法的收敛性和多样性产生影响，

客观上难以实现多目标优化［14］。

1. 2　粒子群多目标优化算法　

在电动出租车充电设施选址问题中，存在诸多离散约束条件，因此可采用 PSO 算法进行求解［25］。

然而，传统 PSO 算法主要针对单目标优化问题，对于求解电动出租车充电设施选址这种多目标优化问

题，存在着易陷入局部最优解、多样性不足等缺点，因此对于将粒子群算法进行改进应用到电动汽车充

电设施选址的问题中一直是研究的热点。

文献［9］提出了一种基于深度神经网络修改边界的粒子群优化来求解电动汽车充电设施选址问

题，通过应用深度学习来修改粒子群优化的边界，从而降低了目标函数的收敛值。文献［10］考虑了时

空充电需求的协调性，提出一种多目标动态二进制粒子群优化算法用于解决电动汽车充电站的选址和

定容问题，通过动态偏好策略和 Sigmoid 二进制映射来更新粒子位置，使得算法在收敛性和多样性之间

取得平衡。张智禹等［11］建立了基于 Dijkstra 最短路径的 Voronoi 图方法和双层动态排队方法的充电站

选址定容模型，采用通过引入混沌模拟退火机制的改进粒子群优化算法求解。

关俊乐等［26］利用面需求法将研究对象从单个充电点扩展到涵盖多个充电设施的大范围配电网络，

对服务区域进行合理划分后再利用 Voronoi 图法对各分区内的充电设施进行选址优化，通过双层粒子

群优化算法求解，兼顾了计算效率和优化结果的精准性。黄子晴等［27］通过在粒子群算法中结合遗传算

法的交叉和变异操作同时对相关参数进行自适应调整，提出了一种基于自适应粒子群优化算法充电站

选址定容方法，以增强粒子群算法的全局搜索能力和收敛速度。Wu 等［28］以最大化充电站全生命周期

净收入为目标函数构建模型，并通过粒子群优化算法确定了充电站的地理位置和充电桩的配置数量。

朱永胜等［29］考虑了用户动态的充电需求，基于出行链理论和起讫点矩阵构建动态交通路网模型并通过

改进 Dijkstra 算法规划电动汽车行驶路径，以充电站建设运维成本和用户经济损失之和最小为目标函

数建立充电站规划模型，并结合粒子群算法对模型求解。张良力等［30］以需求点到充电站距离和最小为

目标函数构建选址模型，并通过引入遗传算法选择、交叉、变异等操作改进粒子群算法进行求解。

这些方法虽然在一定程度上提高了粒子群算法在电动汽车充电设施选址应用上的性能，但相较于

FMPPSO 算法仍然存在着不足。相比于自适应粒子群算法［27］和多目标动态二进制粒子群算法［10］，

FMPPSO 算法结合模糊隶属度函数调整粒子搜索方向，提高了粒子群算法的适应性，使其能够在较少

的迭代次数内收敛到高质量解集，减少了计算复杂度。另外，FMPPSO 算法采用 Epsilon 约束法在优化

过程中动态调整 Pareto 解集，相比于双层粒子群算法［26］和混沌模拟退火粒子群算法［11］能够进一步提高

优化结果的稳定性和适应性。
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综上所述，相较于传统方法，FMPPSO 算法通过引入模糊隶属度函数，能够在多目标优化问题中有

效地平衡多个目标的权重，找到更加平衡的折衷解，展现了更快的收敛速度和更好的收敛精度，能够有

效地避免过早收敛到局部最优解，具有更强的全局搜索。

2 基于模糊数学规划的粒子群算法  

本文研究目标在于满足最小化综合成本、时间限制与电

池损耗约束的前提下确定充电设施的数量与最佳位置。问

题框架如图 1 所示，通过分析车辆轨迹数据得到其充电需求

分布，再利用模糊数学规划将问题转换后通过粒子群算法进

行求解确定充电站的最佳位置。

2. 1　问题描述与建模　

Lam 等［31］给出了电动汽车充电站选址问题（Electric ve⁃
hicle charging station siting problem，EVCSSP）的定义，并证

明了该问题是 NP 困难的。本文根据文献［10，20，25］，考虑

土地价格对充电设施建设成本的影响、充电等待时间对出租

车接客率的影响、电池损耗的影响，建立电动出租车充电设

施选址问题数学模型。优化目标是通过合理充电设施选址，

降低充电站建设与运营成本和电池损耗成本，并且尽量减少

电动出租车的充电等待时间，满足所有车辆的充电需求。

定义 1 充电需求 充电需求指在一定时空范围内，基

于车辆轨迹数据中提取的非道路区域停留行为特征（如长时

间停留的位置、频率及时长），反映用户对充电设施在地理位

置、时间窗口及服务容量等方面的需求。使用基于 STOP/
MOVE 模型的停留点检测算法［32］筛选所有满足充电时长的

非道路区域停留点，根据文献［33］的假设，车辆到达停留点

都会产生充电需求。EVCSSP 建模的主要参数如表 1 所示。

目标函数需要最小化充电设施选址综合成本与电池损耗程度，最大化出租车的接客率与充电设施

的利用率，主要包括建设成本、运营成本、充电等待时间和电池损耗程度，如式（1~4）所示。

min Z1 = ∑
i = 1

N

Ci yi + ∑
i ∈ N

∑
k ∈ K

O ik xik （1）

式（1）目的在于最小化充电站的建设和运营成本。充电站的建设和运营成本包括了建设阶段的初

始投资（如土地费用、设备安装、基础设施建设等）和后续的运营费用（如充电设备的维护、能源供应

等）。这些成本会随着充电站数量的增加而增加，因此优化的目标是通过合理的选址，减少总体成本。

min Z2 = ∑
i ∈ N

∑
k ∈ K

Tik xik （2）

式（2）目的是最小化电动出租车的充电等待时间。充电等待时间的长短直接影响出租车的接客率

和充电设施的利用率。虽然随着充电站数量的增加，充电等待时间会相应减少，出租车会有更多的时

间去接受顾客订单，但目标函数 Z1 的值会相应增加，故两者之间存在着一定的冲突。

Tik = ∑
i ∈ N

∑
k ∈ K

( )dik xik

vk
+ tik （3）

图 1　电动出租车充电设施选址问题

Fig.1　Site selection of charging facilities for 
electric taxis
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式（3）表示的是电动出租车产生充电需求后从

当前位置到达充电站并完成充电的总时间。

min Z3 = ∑
k ∈ K

∑
t

W k ( SOC k ( t ) ) （4）

式（4）是将电动出租车的电池损耗程度最小

化。电动出租车的电池在充放电过程中会产生一

定的能量损耗，影响电池的使用寿命并增加运营成

本。充电策略会影响电池电量状态（State of charge， 
SOC），过深的充电或放电都会增加电池的损耗［20］。

该目标函数通过最小化电池的充放电损耗来优化

充电策略和提高电池的能效。W k ( SOC k ( t ) )表示

车辆 k 在时刻 t 的电池损耗成本，通常在充电过程

中，SOC 越低，需要的充电量越大，电池损耗也会增

加，表达式为

W k ( SOC k ( t ) )= α ⋅ ( ΔSOC k ( t ) ) ⋅ η-1 ⋅ qk ( t )-1 （5）
式中：α 为损耗系数，通常根据电池类型、充电方式

和充电时间来设定，反映了充电过程中能量损失的

比例；η 为充电效率，通常在 0.85~0.95，取决于充电

速率和电池健康状态。充电效率越低，损耗越高。

ΔSOC k ( t )表示车辆在 0 到 t时间内的充电量。

约束条件如式（6~17）所示，问题需要满足的

约束集记为 S ( y )。式（6）表示为避免过多的充电站

造成过度投资或资源浪费，需设定充电站的数量上

限。式（7）电动汽车在行驶过程中，SOC 应保持在合理的范围内，避免电池过充或过放。式（8）确保每

个充电站的充电需求与路径规划一致，即车辆路径上的充电站应满足充电需求，即确保每个充电站都

会有车辆经过。式（9）确保车辆的充电时间 tk 与其理想充电时间 t 0
k 的差异不应超过允许的偏差范围 ϕ，

以保证用户的充电时间符合预期。式（10）约束路径上的所有车辆必须根据充电站的选址和充电策略

进行合理调度，只有在充电站建设的前提下，车辆才能通过该站点进行充电。式（11）约束每辆车的电

池损耗总量，即损耗系数 α 与车辆在 0 到 t时间内的充电量的乘积，不能超过一个预设的最大值 W max，以

确保电池的寿命和车队的长期使用效率。式（12，13）约束了车辆电池的充电阈值以延长电池的使用寿

命。式（14）约束车辆需要充电时，剩余电量能够满足前往充电站。式（15，16）分别表示电动出租车的

数量不超过车辆的最大数目，建造的充电站数量不超过所需建造的充电站最大数量。式（17）约束变量

为 0⁃1 变量。

∑
i = 1

N

yi = M （6）

SOCmin ≤ SOC k ( t ) ≤ SOCmax，∀k ∈ K （7）
∑
k ∈ K

xik ≥ 1，∀i ∈ N （8）

| tk - t 0
k |≤ ϕ，∀k ∈ K （9）

表 1　参数与释义

Table 1　Parameters and interpretations

参数

N

M

K

Ci

O ik

Tik

dik

vk

W k

Q k

SOC k ( t )
SOCmin,SOCmax

η

α

qk ( t )
tik

t required

pk

yi

xik

释义

研究区域内的所有充电站位置集合

需建设的充电站数量

车辆集合

充电站 i的建设成本

充电站 i对车辆 k的运营成本

车辆 k到充电站 i的充电等待时间

车辆 k到充电站 i的距离

车辆 k的行驶速度

电池损耗程度

车辆 k电池的总容量

车辆 k在时刻 t的电池电量

车辆电池的最小和最大电量阈值

电池充电效率

电池损耗系数

车辆 k在时刻 t需要的充电功率

为车辆 k在充电站 i的充电时间

为车辆 k所需充电总时长

车辆 k里程耗电量

0⁃1 变量，充电站 i是否选址

0⁃1 变量，车辆  k 是否经过充电站 i，

并在该站充电
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∑
i ∈ N

xik ⋅ tik = t required，∀k ∈ K （10）

α ⋅ ΔSOC k ( t ) ≤ W max，∀k ∈ K （11）
20% ⋅ Qk ≤ SOCmin （12）
SOCmax ≤ 80% ⋅ Qk （13）

pk ⋅ dik ≤ SOC k ( t )，∀k ∈ K （14）

∑
i ∈ N

∑
k ∈ k

xik ≤ || K （15）

∑
i ∈ N

yi ≤ || N （16）

xik，yi ∈ { 0，1 }，  ∀i ∈ N，k ∈ K （17）

2. 2　Epsilon约束机制　

EVCSSP 选址模型涉及多个优化目标与诸多离散约束条件，常用的方法是转换为单目标问题求

解［34］。其中一种方法是权重法［35］，即通过为各目标赋予权重，将多个目标函数线性组合为 1 个总体目

标函数。然而，权重法容易导致求解陷入可行域的角点解（即 Pareto 最优解的极端点）。这种方法可能

会导致不同权重组合下多次计算相同的角点解，因而多次搜索相同的区域，产生冗余运行，进而降低算

法的收敛速度。

Epsilon 约束法是一种改进的方法，它将一个目标函数作为主要优化目标，将其他目标函数作为带

有 Epsilon 约束的约束条件，从而改变可行域的形状。该方法能够生成非角点的 Pareto 最优解，即 Pare⁃
to 前沿上的非极端点［36］。因此，每次运行该算法时，都有可能产生不同的有效解，从而获得更为丰富的

Pareto 解集。该方法的核心优势在于其能够有效改变可行域的结构，使解不局限于极端点，而是覆盖更

广泛的 Pareto 前沿区域，从而提高解集的多样性与代表性。此外，Epsilon 约束法通过分离主要目标与

次要目标，使优化过程更具稳定性，有助于降低权重法中目标冲突所带来的梯度干扰，提升整体收敛

性能。

然而，在实际应用中，多个目标函数通常存在量纲不一致、评价机制差异大等问题，直接施加 Epsi⁃
lon 约束可能引发可行性扭曲。为此，本文进一步将各目标函数映射至统一的模糊隶属度空间，引入模

糊数学规划理论，通过构造满足单调性与凸性要求的隶属度函数，使目标函数在变换后仍保留其原有

结构与优化方向。

2. 3　基于模糊数学规划的目标转换　

在 Epsilon 约束法中，当原目标函数的对应隶属度函数设计满足公理化条件 1 时，称目标转化不改

变优化问题的结构［37⁃38］。

公理化条件 1　　原目标函数与对应隶属度函数的单调性相同，且当原目标函数达到理想的最优值

时，对应隶属度函数取值为 1，当原目标函数达到容忍下限时，对应隶属度函数取值为 0；同时，保证模糊

可行域为凸集，使最优解存在且唯一。

可以构造线性分段函数作为隶属度函数，对求解目标进行转化。首先，需要分别使用单目标粒子

群算法求解充电站的建设和运营成本的最优值 Z ( opt )
1 ，用户充电等待时间的最优值 Z ( opt )

2 与电池损耗成

本的最优值 Z ( opt )
3 ，求解一个目标的最优时不考虑另一个目标。再使用单目标粒子群算法在其中一个目

标固定最优时，求解另一个目标能达到的最优值，称为纳德值，得到充电站的建设和运营成本的纳德值

Z ( nad )
1 ，用户充电等待时间的纳德值 Z ( nad )

2 与电池损耗成本的纳德值 Z ( nad )
2 。将 3 个目标归一化后，单独讨

论取值为 0 和 1 的极端情况，得到原目标的 3 个隶属度函数 mZ1
( y )、mZ2

( y )和 mZ3
( y )，表达式为
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mk ( y )=

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

0 k ( nad ) < k
k ( nad ) - k

k ( nad ) - k ( opt )
k ( opt ) ≤ k ≤ k ( nad )

1 k < k ( opt )

      k ∈ { Z1，Z2，Z3 } （18）

由于最优值表示仅考虑这一目标时所取到的最小值，纳德值表示在其他目标固定最优时当前目标

所能取到的最小值，因此这一比值越接近 1，表示当前目标值越接近实际的最优值。归一化后，基于 Ep⁃
silon 约束法对隶属度函数进行优化求解。原问题转化为

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

max mZ1
( y )

s.t.    
ì

í

î

ïïïï

ï
ïï
ï

mZ2
( y )- ε1 ≥ 0

mZ3
( y )- ε2 ≥ 0

y ∈ S ( y )

（19）

式中：mZ1
( y )为粒子群算法的适应度函数，S ( y )为原问题的约束；ε1 和 ε2 分别表示对目标 Z2 和目标 Z3

的最小满意度阈值，用于限定对应目标在优化过程中相对于其理想解的偏离程度。在 Epsilon 约束法求

解过程中，ε1 和 ε2 在区间［0，1］内按照预设步长逐步调整。对于每一组（ε1，ε2）的取值，求解对应的约束

优化问题可得到一组候选解及其对应的 mZ1
( y )，从中挑选 mZ1

( y )值最接近 1 的粒子位置作为全局最

优解。

式（18）设计的隶属度函数是线性分段函数，确保了优化问题的结构不变，从单调性和凹凸性两个

方面进行证明。

证明 1 单调性 根据式（18）隶属度函数的定义，由于 k ( opt ) 和 k ( nad ) 为常数，且目标函数 k 递减表示

优化方向，因此隶属度函数 mk ( y )是关于目标函数的递增函数。转换后的优化目标等价于最大化隶属

度函数值，并不会改变目标优化的方向。

证明 2 凹凸性 假设原目标函数 k是凸函数，由于 k ( opt )和 k ( nad )为常数，式（18）是对 k的仿射变换并

不会改变其凸性，因此隶属度函数 mk ( y )仍是凸函数，即目标转换后仍然保持优化问题的凸性。

在 Epsilon 约束法中，式（19）通过新增 Epsilon 对目标的隶属度进行约束，其等价于

k ≤ k ( nad ) - ε ( k ( nad ) - k ( opt ) )      k ∈ { Z2，Z3 } （20）
由于原目标函数 k是凸函数，不等式右侧为常数，因此该约束仍然保持凸性。Epsilon 约束不会破坏

凸可行域，确保了优化问题的结构不变。本文将原目标函数映射到模糊隶属度空间，满足公理化条件

1。目标转换并不会破坏原问题的单调性和凹凸性，因此并不会改变问题的结构。

2. 4　算法求解　

采用粒子群算法对转换后的问题进行求解，如算法 1 所示。先构造 N 行 2 列矩阵粒子，如式（21）所

示，表示 N 个充电站的位置，矩阵每行代表 1 个充电站的位置坐标。

At =

é

ë

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

úxt
1 y t

1

xt
2 y t

2

⋮ ⋮
xt

N y t
N

（21）

式中：t表示迭代次数；N 为粒子群粒子的个数；xt
i、y t

i 分别表示第 t次迭代粒子群第 i个充电站的 x 坐标与

y 坐标，其速度为 vt + 1
i，x 、vt + 1

i，y ，分别由式（22，23）计算，粒子群坐标更新见式（24）。

vt + 1
i，x = w x × vt

i，x + c1，x × r1 ×( pbest i，x
- xt

i )+ c2，x × r2 ×( gbest i，x
- xt

i ) （22）
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vt + 1
i，y = w y × vt

i，y + c1，y × r1 ×( pbest i，y
- y t

i )+ c2，y × r2 ×( gbest i，y
- y t

i ) （23）

ì
í
î

ïï
ïï

xt + 1
i = xt

i + vt + 1
i，x

y t + 1
i = y t

i + vt + 1
i，y

（24）

式中：w x 和 w y 为粒子在 x 维度和 y 维度上的惯性权重；c1，x 和 c1，y 为粒子 i 的 x 和 y 坐标对个体最优位置

的学习速率；c2，x 和 c2，y 为粒子 i的 x 和 y 坐标对全局最优位置的学习速率；r1 和 r2 为［0，1］范围内的随机

数；vt
i，x 和 vt

i，y 为粒子 i的 x 和 y 坐标在第 t次迭代中的速度；xt + 1
i 和 y t + 1

i 为粒子 i在第 t + 1 次迭代中的位

置；pbest 为粒子 i在迭代过程中的个体最佳位置；gbest 为粒子 i在迭代过程中的全局最佳位置。

算法 1 基于模糊数学规划的粒子群优化算法

输入： 种群大小 N， 最大迭代次数 Tmax， 模糊隶属度函数 mZ ( y )
输出： 全局最优解 gbest

（1） v initial，x initial，y initial ← Random_particle ( N ) //初始化每个粒子 i = 1，2，…，N 的位置和速度

（2） pi ← Set_localbest ( v initial，x initial，y initial ) //设置个体最优解 pi

（3） gbest ← Set_globalbest ( v initial，x initial，y initial ) //设置全局最优解 gbest

（4） mZ ( y ) ← Calculate_fuzzyvalue ( v initial，x initial，y initial ) //根据式（19）计算模糊目标函数值 mZ ( y )
（5） 　　for t = 1 to Tmax do
（6） 　　　for 每个粒子  i do
（7） 　　　　vt ← Update_velocity ( vt - 1，pi，gbest )
（8） 　　　　xt，yt ← Update_position ( xt - 1，yt - 1，vt + 1 ) //更新速度和位置

（9） 　　　　mZ ( y )new ← Calculate_fuzzyvalue ( vt，xt，yt ) //计算模糊目标函数值

（10） 　　　   if mZ ( y )new > m Z ( y ) then//新位置产生更好的目标函数值

（11） 　　　　　pi ← ( xt，yt ) //更新 pi

（12） 　　　   end if
（13） 　　   end for
（14） 　　　   gbest ← pi //更新  gbest

（15） 　　　   if 满足终止条件 then
（16） 　　　　   return gbest

（17） 　　　   end if
（18） 　   end for
在 FMPPSO 算法初始阶段，通过 Random_particle ( ) 函数随机初始化粒子的速度和位置，函数

Set_localbest ( )和 Set_globalbest ( )通过生成的初始速度和位置设置个体最优和全局最优解，根据式（19）
通 过 函 数 Calculate_fuzzyvalue ( ) 计 算 模 糊 目 标 值 ，迭 代 过 程 中 ，函 数 Update_velocity ( ) 和

Update_position ( )根据式（22~24）不断更新粒子的速度和位置，通过比较模糊目标函数值更新个体最

优解与全局最优解，在达到最大迭代次数完成迭代返回全局最优解。

3 实验与结果分析  

实验中首先对车辆轨迹数据进行筛选，得到非道路停留点数据作为充电需求，随后采用 FMPPSO
和相关对比算法对构建的电动出租车充电站选址模型进行求解，得到最终的充电站选址方案以满足充

电需求。
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3. 1　数据处理　

本文实验数据集采用成都市 2014 年 8 月 3
日至 15 日的出租车轨迹数据集，原始数据集提

供车辆 ID、经纬度和时间等信息，包含 14 677 辆

车产生的共计 2 411 748 个轨迹点。因原始数据

量过于庞大，对该数据集进行了数据清洗［39］，将

实验研究区域设定为成都市金牛区、成华区和

青羊区，筛选出 14 577 辆车产生的共计 903 954
个轨迹点进行仿真实验。筛选后数据集的结构化数据示

例如表 2 所示，以第 1 行数据为例说明，ID 为 1 的车辆于

2014 年 8 月 3 日 9 时 21 分 到 达 坐 标（104.126 703，
30.655 876）。

本文设定的电动出租车参数参考吉利帝豪 EV450 配

置［25］，相关参数为：车辆电池容量为 50 kWh，单位里程耗

电量为 0.2 kWh ⋅ km-1，电池充电速度为 1.2 kWh ⋅ min-1。

设置研究区域内充电站的最大个数为 20 个，考虑到土地

价格对每个充电站的建设成本的影响，将研究区域分为 4
个 级 别 ，如 图 2 所 示 。 区 域 1 最 靠 近 市 中 心 ，由 坐 标

（104.047 2，30.664 8），（104.088 1，30.664 8），（104.088 1，
30.655 8），（104.064 5，30.655 8）连线围成，在该区域建设

充电站的成本（以下简称“建站成本”）为 2 590 万元/亩；区域 2 由坐标（104.047 2，30.670 8），（104.100 0，
30.670 8），（104.100 0，30.655 8），（104.064 5，30.655 8），（104.047 2，30.664 8）围成，建站成本 1 780 万

元/亩；区域 3 由坐标（104.047 2，30.678 8），（104.108 0，30.678 8），（104.108 0，30.655 8），（104.064 5，
30.655 8），（104.047 2，30.664 8）围成，建站成本 1 251 万元/亩；区域 4 由坐标（104.047 2，30.730 3），

（104.149 3，30.730 3），（104.149 3，30.655 8），（104.064 5，30.655 8），（104.047 2，30.664 8）围成，建站成

本 830 万元/亩。假设每个充电站占地 2.41 亩，可同时容纳 46 辆车充电。

3. 2　充电站数量对适应度函数和目标函数的影响

图 3 展示了车辆充电需求的空间分布热力图，充电需求通过筛选车辆非道路停留点得到，区域颜色

越深，表示该区域所需的充电需求越高。为降低个体实验结果随机性带来的影响，本文针对不同充电

站数量设定，在相同数据集上分别进行了 10 次仿真实验，并取其平均值作为最终的适应度函数值。采

用 FMPPSO 算法优化后，适应度函数值随着充电站数量的变化而波动。如图 4 所示，当充电站数量为

5~8 时，适应度函数值更加接近 1，表明该区间内的解质量相对较高。

图 5 展示了设定 5~10 个充电站个数时各个目标函数归一化后的变化情况，当充电站数量为 8 个

时，车辆电池损耗最低，充电等待时间也相对较短，因此在研究区域内，充电站的最优数量为 8 个。此配

置不仅能够降低建站所带来的综合成本，避免因充电站建造数量过多造成资源浪费，同时还可减少电

动出租车的充电等待时间，提高接客率，并将电池损耗降到最低，从而延长车辆电池的使用寿命。最终

确定的充电站布局方案如图 6 所示，该方案能够最大程度满足车辆的充电需求，最优充电站建设成本为

21 596.01 万元。

表 2　数据集数据结构实例

Table 2　Examples of dataset data structure

车辆 ID
1
1
1

⋮

纬度/（°）
30.655 876
30.655 894
30.655 921

⋮

经度/（°）
104.126 703
104.115 216
104.115 273

⋮

时刻

2014⁃08⁃03 09:21:16
2014⁃08⁃03 22:13:51
2014⁃08⁃03 09:27:07

⋮

图 2　区域建设成本划分结果

Fig.2　Division of regional construction costs
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3. 3　FMPPSO 与其他优化算法的性能对比　

在确定充电站数量的基础上，进一步验证 FMPPSO 算法的优化性能，与其他主流算法进行对比分

析。基于耗电量产生的充电需求，为了解决区域内 EVCSSP 问题，本文通过与多目标动态二进制粒子

群优化（Multi⁃objective dynamic binary particle swarm optimization， MODBPSO）算法［10］、改进粒子群优

化（Improved particle swarm optimization， IPSO）算法［25］、传统多目标粒子群优化（Multi⁃objective parti⁃
cle swarm optimization， MOPSO）算法［40］的比较，评估了所提出的 FMPPSO 算法的性能。仿真实验已

经验证了本文方法的有效性，下面为了比较算法的收敛性，比较最终收敛的目标函数最优值与平均迭

代次数两个关键指标。

图 7（a~c）分别展示了 FMPPSO、MODBPSO、IPSO 和 MOPSO 算法在充电站数量变化下，最终

综合成本、充电等待时间以及电池损耗的变化趋势。如图 7（a）所示，FMPPSO 的综合成本处于较低

水平，而为了平衡其他目标，在相同充电站个数情况下，MODBPSO、IPSO 和 MOPSO 选择地价更高

的中心区域建站，进而导致综合成本上升。如图 7（b）所示，随着充电站个数增加，各种方法的等待时

间均有所下降，但 FMPPSO 的等待时间始终较低，体现充电站布局的合理性，各车辆从产生需求到前

往充电站等待的时间能与前序车辆的充电时间部分抵消。如图 7（c）所示，随着充电站个数的增加，

FMPPSO 的电池损耗较低且较为稳定，而 MODBPSO、IPSO 和 MOPSO 始终处于较高水平且波动较

大。图 7（d）展示了 4 种算法在优化过程中经历 1 000 次迭代后的综合成本目标函数值收敛曲线。可

以观察到，FMPPSO 与 MODBPSO 均在大约 500 次迭代后达到各自的最优目标函数值。MODBPSO

图 3　车辆充电需求分布热力图

Fig.3　Heatmap of vehicle charging demand distribution
图 4　FMPPSO 适应度函数变化

Fig.4　Changes in FMPPSO fitness function

图 5　不同充电站个数目标函数值的比较

Fig.5　Comparison of objective function values for 
different numbers of charging stations

图 6　基于 FMPPSO 充电站选址方案

Fig.6　Layout plan for FMPPSO charging station 
site selection
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的最终收敛值约为 2.31 亿元，而 FMPPSO 的收敛值约为 2.25 亿元，进一步验证了 FMPPSO 在优化质

量方面的优势，相较于 MODBPSO 可降低综合成本约 5.4%，此时 FMPPSO 对应的充电站个数为 8
个，等待时间 517 h，电池损耗 246 kWh。此外，IPSO 与 MOPSO 在大约 300 次迭代后即完成收敛，反

映出这两种算法在求解 EVCSSP 问题时全局搜索能力不足，容易陷入局部最优，导致过早收敛，进而

影响最终解的质量。结果表明，相较于其他算法，FMPPSO 算法能够在较少的迭代次数内更精确地找

到全局最优解，说明该方法能够有效地解决 EVCSSP 问题。

4 结束语  

本文提出了一种基于模糊数学规划的高级粒子群优化算法 FMPPSO，用于研究电动出租车充电设

施选址优化问题。通过系统仿真实验验证了所提算法在收敛速度、优化精度及解的稳定性方面的优

势，并表明 FMPPSO 能够在多目标优化环境下有效权衡建设成本、路径成本与电池损耗等指标。模糊

隶属度函数的引入显著提升了粒子在搜索空间中的适应性，Epsilon 约束策略进一步增强了多目标优化

过程中的均衡性和可行性，使得所得解在多目标之间具有更高的应用潜力。未来的研究可进一步结合

深度学习、强化学习等先进智能优化技术，以提升 FMPPSO 算法在大规模、动态充电设施选址问题中

的适应性与求解效率。同时，可考虑引入充电站与电网资源的协同优化机制，建立更加智能、高效的综

合能源基础设施选址模型。鉴于本文以历史数据为基础建模，未能充分反映充电需求随时间动态变化

的特性，后续工作可结合实时数据流与动态优化策略，以增强选址方案的实时响应能力与应用广度，从

图 7　实验对比结果图

Fig.7　Experimental comparison results
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而更好地满足未来电动交通系统的实际需求。
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Multi⁃objective Particle Swarm Algorithm for Location Selection Optimization Inte⁃
grating Epsilon Constraint and Fuzzy Mathematical Programming

ZHOU　Qian1，3， WU　Jiayang2，3*， ZHOU　Yuhang2，3

(1. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2. School of Modern 
Posts, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 3. System Security and Availability 
Engineering Institute, Nanjing University of Posts and Telecommunications, Nanjing 210003,China)

Abstract： This study aims to address the critical challenges of spatial imbalance and low utilization 
efficiency in the siting of electric taxi charging facilities in large-scale urban environments. To this end， this 
paper proposes a multi-objective particle swarm optimization algorithm integrating epsilon-constraint 
handling and fuzzy mathematical programming， referred to as FMPPSO， with the objective of achieving a 
balanced and efficient charging facility layout that simultaneously considers economic cost， service 
efficiency， and battery health. The proposed method formulates the electric taxi charging station siting 
problem as a multi-objective optimization model incorporating construction and operation costs， taxi 
charging waiting time （reflecting passenger pickup rate）， and battery degradation cost. To overcome the 
limitations of traditional weighted-sum methods and conventional evolutionary algorithms， fuzzy 
membership functions are constructed to normalize heterogeneous objectives into a unified fuzzy decision 
space， enabling adaptive adjustment of objective preferences while preserving the original optimization 
structure. Furthermore， an epsilon-constraint mechanism is introduced to transform secondary objectives 
into dynamic constraints， which effectively balances solution convergence and Pareto front diversity， 
mitigates premature convergence， and enhances global search capability. The transformed problem is 
solved using an enhanced particle swarm optimization framework， where particles represent candidate 
charging station locations and evolve iteratively under fuzzy-evaluated fitness and epsilon-controlled 
feasibility conditions. Extensive simulation experiments are conducted based on realistic electric taxi 
operation scenarios， and the proposed FMPPSO algorithm is compared with several state-of-the-art multi-
objective optimization algorithms. Experimental results demonstrate that FMPPSO achieves superior 
performance in terms of convergence speed， solution stability， and Pareto solution diversity. 
Quantitatively， the proposed method improves the final objective values by approximately 3.8% compared 
with benchmark algorithms， while also exhibiting faster convergence under the same computational budget.
Highlights:
1. A novel fuzzy mathematical programming based particle swarm optimization （FMPPSO） algorithm is 
proposed by integrating epsilon-constraint handling with fuzzy mathematical programming， effectively 
addressing conflicting objectives in electric taxi charging facility siting.
2. A fuzzy membership⁃based objective transformation strategy is developed to normalize heterogeneous 
objectives and dynamically adjust optimization preferences， overcoming the limitations of traditional 
weighted-sum methods and premature convergence.
3. An Epsilon-constraint mechanism is incorporated to balance convergence speed and Pareto solution 
diversity， enabling the generation of high-quality and well-distributed Pareto fronts for large-scale siting 
problems.
Key words： electric taxis; location selection of charging facilities; fuzzy mathematical programming; 
Epsilon constraint; particle swarm optimization
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