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 E:-aatAPETEngF, AR E AR M SN EACTRIR S T 0 IREF T 3E LB A R
% (Deep learning based semantic communication system using federated learning based on hypernetworks,
DeepSC-FedHN) ., # %M % BRIAAZ ML REFZHENKLA P EL S T EBRG T LM, £ RA
MRS ELEE R A4 B A, Flat, KA IR IR S I (Federated learning, FL) 3L ik A4 R
A4S 8 5 R AL 25 A iE LM AL 530 4, F R R A, A LR 49 DeepSC-FedHN 7 % B4R T Al
% 7 % BRI F ¥ (Federated averaging, FedAvg) 7 % (B& R L 4 (Federated proximal, FedProx) 7 % #=
KR BEABACEK I F T W RE F 3 3 L 12 & 4 (Deep learning based semantic communication
system using layer-wised personalized federated learning, DeepSC-pFedLA) .

KEIW: FFHH BB RAF T BRNL

mESES: TNI29.5 MR AAD A

Sl A XA MR, S, £, 5 B T A AR IR 2 2 s SGEF iR R g [T B R & S Ak AR
2026,41(1) :117-131. LIU Yuezhao, GUO Haiyan, WANG Tianshun,et al. Speech transmission system based on per-

sonalized federated learning and semantic communication[ J].Journal of Data Acquisition and Processing, 2026,41(1) :
117-131.
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T TR E B IE S LB S R 5 (Deep learning enabled semantic communication system for
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4 (Neural network, NN) bk | 7] DL & # 4E B & 55 o SCHk[ 24 1 F) H Transformer-X L 3 7 + 1 254K
R RE T B T A TSR S AL A SGEE R Y. SCERI25 ]8R T AN B T OB Y ) A
T OSGHEAE R, 1R G 0] LUTEAR 18 A5 1 8 BE R AL 1A% 00 N XHE & (55 T LM RiE & .

R AR R SR S5 AR SGEAE PR E R R P s, R AL Tl 2 P
HA WAL R . OF B 5 P B AR MBSO A1 A8 DR R 58 43, AR o B A P 9 A i R DI 2 A
B, A e 4 T SO R T 38 SUfE B4R B PERR LSS | I 2 F P SR KB 2 2] (Federated learning, FL)
HE 22 R AT B, AT L A B D B0 R 14 T S O A5 80 il B AR AR AR | BT B A 5 4
B H P SUfE B

FLAE R — gt 2410 73 A7 UM 2% S HE SR HL 2 B AU L 00 i /2 2 A 3 & b i B0l S 4 s b2
2 ) AU [l I B R AR M ER o % FL I AR 2 ] P if SGE R, a] UG 80 3R 6 308 25 0 1 B A 3
PR PR AR B PERE . Tong 2617 i [ 8 5 LML 55, 0T & T 2T FL BB Ll AS R4, R B2
(Federated averaging, Fed Avg) Sk #EAT R 1Y 2 & B0, W RN 1 0 S B 4% 5 Ik 55 e =2 1) 3 15 O
H4 . T 1) B AR AL AT 5, Deng 45 R I T — Fh 45 4 % BLUR 2 M 2% (Convolutional neural network,
CNN) Fl Transfromer 15 SGE 5B, SR BRI T3 FedAvg Sk ok RE A - LA B &4 & T
BRI Pk RE , I B> T RS IR ] . Xie S5 V3R T — Rl JE T FL f93E U S HEZE T T4
I 35 45 119 22 4T 45 40 A X AR i . Wel 50 R T — Bl BB 3 2% > fiE 42 (Federated semantic
learning, FedSem) , 75 1 T 5 il (1 75 S 18 ff 0% 25 00 DR 08 8, 8 IR1 I 25 224> 15 45 1 SUAR T8 S i 2%, 7T
LA FE 50 1) 40 A 280 AT S IR . Xie 51T i 42 RO 45 LR & T — A L Bh 4B ROk AT I X
G i, [) IF R FH S 2D B 2 ) B, LA D I o 2 e 68 25 0 A% W B8 o SCik [ 32 18 ] SCA L i AT 55
P b T — A SGHEAR R FL A J7 2, Re 06 B RLUA 20 27 >) 3 F P 4080 i R AE .

TE B3R R I FL 0 2 0 P if SCRAFOF 5 i 5 R 0 FedAvg Bk o 2B R & & IR
bR AR 5 KON A A AR BB R S RO T — AL, SR R S BT IR Y o SR
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tributed, Non-TID)F5E £ @ SOFT A AT P 4 22 [l — A~ 4 Je B0 A] Al 25 15 4% P A A ot 8090 O 85 K
s HAE S B BB g . AR B IS 2% 2] (Personalized federated learning, pFL)#L i i 14k FL
BT SR A5 ol A ke A S PR AR BT AT DL AE 4 R B R 1 Bl b Sk B P IR — A R, L3
SRR €/ R

Y F bR B AR SO 1) 22 FH P AL R, 3 — b (0 R 0 4 A A BB T 2 T 1 R T o
> i X3 {5 & 48 (Deep learning based semantic communication system using federated learning based on
hypernetworks, DeepSC-FedHN) . 25 [ 2 %> F A b (14 1 5 HCH A7 76 D605 A By b DX R ) 55 22
S, T FLAEZE R TR 0 286 Sk B A FH P 2B 80— > A P A 19 2R 6 ASC o 6 I, ) g A A it 56 il A6 A2
DeepSC-S HEATAMPELEE #r . A SCHIHE T — Fh 45 4 pFL Ml FedAvg M9 4 P i35 18 IR R 4. %
R G R BN 45 R B A A B 22 L 45 S Fed Avg Rl pF L, X 4% FH P B A s #8106 1 7 38 & 8T,
BRAT T DG IE A b BRCHE 23 A R M B SR A AR s Y B v A T P A S SR BGE R NE R Ee . R)E,
P BT — b BE TR 2% A O pFL Rk o IR T I B O S A A 1 A TR BT 1 AR B A 2] A
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W, DL A VA TR St &% 2 50 [R) IR, 2% 1 300 15 18 G Ak B0 25 R SRS 25 8 2 5 A i P 8080 1
SCHFAE 4 52 30, A5 Fed Avg 5336 X5 & FH P 09 07 18 2 Ak B 2 008 SCAR AL 25 AT AL R & S0 . 76 TIM-
I'T %48 45 il Edinburgh DataShare i & 8085 42 A SE IR 45 L R W], A SCHE 1Y DeepSC-FedHN 76 % WL iF
& ot &t P 4l (Perceptual evaluation of speech quality, PESQ) . f& 5 %k H L (Signal-to-distortion ration,
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SDR) il 45 i % W ] 48 & (Short-time objective intelligibility, STOT) & ¥4 F 4 # Il 25 06 W JE T Fe-
dAvg B 25 M 2L T FedProx " Ml 2156 W% . 55 &b, AR SO 4R HH B9 DeepSC-Fed HN Ay 51 3R 4415
i i AT R A 2 A AR S 2% 2 B9 IR BE 2 2 1 L3l 15 & 48 (Deep learning based semantic communi-
cation system using layer-wised personalized federated learning, DeepSC-pFedLA ), %F 7 F i3 id A #9519
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Fig.1 Structure of DeepSC-S model
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X5 PR LA i 5 e 55 i BS AR, A4S P A8 R F 58 4% 3112 4% (Device to device, D2D) 5 24T L4k
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Fig.3 Workflow of hypernetworks
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Ao @ BRI G F AN 3P X N X n+ P X(3n+ 1)X N,

17 % F 2B Sk [ 39 /Y 77 12, A M 45 h DeepSC-S #5550 1 it 47 )2 e 1 38 4 AT I, 485 80 ) 2 2
H6n+ 3, B IR SR E SN N X(6n+ 3), MR A ML ZIE 2 P X
N X(6n+3)%,

3 &g iE
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(5) end while
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(12) end for
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(13) FedAvg B A BHARYE FedAvg BE 5] ¢, 1, 0,
(14) GRS %45 0,0, x, 0, K3 A1 45 P

(15) P U 0i xR S8

(16) t=1+1

(17) end while
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Fig.4 Distribution of user data under different partition methods (TIMIT dataset)



124 R E B L Journal of Data Acquisition and Processing Vol. 41, No. 1, 2026

] B, 7% SCiA i Edinburgh DataShare i & %045 4 At THCHS-30 15 & £ 4ls 5 #E AT #h 5 55 50 . Ed-
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Speech Transmission System Based on Personalized Federated Learning and

Semantic Communication

LIU Yuezhao, GUO Haiyan’, WANG Tianshun, CHEN Feifei

(School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003,
China)

Abstract: In multi-user speech transmission scenarios, the statistical heterogeneity of data among different
users results in the transmission performance degradation if a uniform semantic communication based
speech transmission model is used by all users. To address this problem, this paper proposes a novel deep
learning-based semantic communication system using federated learning based on hypernetworks (DeepSC-
FedHN), enabling each user to obtain a personalized model adaptive to its own data characteristics without
compromising data privacy. Specifically, considering that different modules of the semantic encoder play
different roles in extracting semantic information, the edge server employs a per-user hypernetwork to
generate a personalized aggregation weight matrix by dynamically evaluating the importance of each module
in the semantic encoder. The generated aggregation weight matrix is then used to update the corresponding
model parameters, effectively tailoring the global knowledge to different users’ needs. Concurrently, since
the channel codec and semantic decoder are not involved in extracting the semantic features of each local
users’ data, the standard federated averaging (FedAvg) algorithm is used to perform weighted aggregation
and updates on the channel codecs and semantic decoders of all the users. Experimental results on TIMIT
and Edinburgh DataShare datasets show that the proposed DeepSC-FedHN scheme leads to significant
improvement of speech transmission performance. Specifically, it outperforms conventional local training,
the standard FedAvg approach, the federated proximal (FedProx) method, and the layer-wise
personalized FL. scheme (DeepSC-pFedLA) in terms of perceptual evaluation of speech quality (PESQ) ,
signal-to-distortion ratio (SDR) and short time objective intelligibility (STOI) , particularly in non-
independent and identically distributed (non-IID) data settings. Additionally, the proposed DeepSC
FedHN model exhibits better generalization ability for unseen speakers’ data and also demonstrates
significantly lower computational overhead for model aggregation compared to the DeepSC pFedLA. We
conclude that the integration of a hypernetwork for generating personalized weights offers a highly effective
mechanism for tackling data heterogeneity in federated semantic communication systems, leading to
superior and more adaptable speech transmission performance while fully preserving user data privacy.
Highlights:

1. Propose a novel deep learning-based semantic communication system using federated learning based on
hypernetworks (DeepSC-FedHN) for personalized multi-user speech semantic communication.

2. Use a hypernetwork to generate user-specific aggregation weights for encoders and aggregates channel
codec and decoder via standard federated learning.

3. Achieve superior performance under non-1ID data while preserving privacy.
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