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基于个性化联邦学习和语义通信的语音传输系统

刘月照， 郭海燕， 王添顺， 陈飞飞

（南京邮电大学通信与信息工程学院，南京  210003）

摘 要： 面向多用户语音传输场景，本文提出一种使用超网络个性化联邦学习的深度学习语义通信系

统（Deep learning based semantic communication system using federated learning based on hypernetworks， 
DeepSC‑FedHN）。边缘服务器采用超网络来衡量每个本地用户语义编码器中各模块的重要性，生成个

性化聚合权重矩阵来更新相应模型参数。同时，采用联邦学习（Federated learning， FL）算法聚合模型

的信道编解码器和语义解码器部分。实验结果表明，本文提出的 DeepSC‑FedHN 方案总体优于本地训

练方案、联邦平均（Federated averaging， FedAvg）方案、联邦近似（Federated proximal， FedProx）方案和

采 用 分 层 个 性 化 联 邦 学 习 的 深 度 学 习 语 义 通 信 系 统（Deep learning based semantic communication 
system using layer‑wised personalized federated learning， DeepSC‑pFedLA）。
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引   言

近年来，随着深度学习技术的高速发展，语义通信研究受到越来越多的关注，成为目前的研究热点

之一［1‑2］。与传统通信旨在传输恢复源信号自身数据不同，语义通信关注与接收端任务（如分类、检测、

重构等）相关的语义信息的提取和传输，从而有效节约了通信资源［3］。目前，国内外学者已开展面向文

本类任务［4‑6］、图像类任务［7‑9］、视频类任务［10‑11］和多模态信号类任务［12‑13］等的语义通信研究，结果表明，

语义通信与传统通信相比，大幅度提高了通信效率，有效改进了用户的体验质量［14］。

在面向语音类任务的语义通信研究方面，文献［15‑18］针对语音识别任务开发了一系列语义通信模

型。文献［19‑20］针对语音翻译任务设计了不同的语义通信模型。针对语音传输任务，Weng 等［21］提出

利用挤压和激励（Squeeze‑and‑excitation， SE）网络捕捉语音信号的基本特征，基于 SE‑ResNet 模块，设

计了基于深度学习的语音语义通信系统（Deep learning enabled semantic communication system for 
speech signals， DeepSC‑S）。Xiao 等［22］使用联合信源信道编解码（Joint source‑channel coding， JSCC）方

法设计了命名为深度语音语义传输（Deep speech semantic transmission， DSST）的语音传输系统，在保

证语音重构质量前提下减少了模型的信道带宽。文献［23］将语音识别和语音合成作为通信系统的传

输任务，提出了基于深度学习的语音传输语义通信系统（Deep learning based semantic communication 
system for speech transmission， DeepSC‑ST），在接收端通过将识别的文本和说话人信息输入到神经网
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络（Neural network， NN）模块，可以重新生成语音信号。文献［24］利用 Transformer‑XL 捕获长距离依

赖的能力，设计了一个用于实时语音传输的语义通信系统。文献［25］提出了一个基于扩散模型的音频

语义通信系统，该系统可以在信道条件高度退化的情况下对语音信号进行去噪和修复。

上述语音传输类任务的语义通信研究主要面向单用户场景。然而，在现实环境中，通常多个用户

都有语音传输需求。并且，单个用户的本地数据往往并不充分，仅通过单个用户的本地数据训练本地

模型，可能会导致模型对于语义信息提取的性能较弱，而多用户采用联邦学习（Federated learning， FL）
框架［26］进行协作，可以在保障用户数据隐私的前提下更新得到性能更佳的本地模型，从而更有效地提

取各用户的语义信息。

FL 作为一种新兴的分布式机器学习框架，其主要思想是基于分布在多个设备上的数据集构建机器

学习模型，同时防止数据泄露。将 FL 引入到多用户语义通信中，可以有效地聚合更新各个用户的本地

模型，提高模型的性能。Tong 等［27］面向语音传输任务，开发了基于 FL 的语义通信系统，采用联邦平均

（Federated averaging， FedAvg）算法进行模型的聚合更新，显著降低了边缘设备与服务器之间的通信开

销。面向图像传输任务，Deng 等［28］提出了一种结合卷积神经网络（Convolutional neural network， 
CNN）和 Transfromer 的语义通信模型，采用联邦平均 FedAvg 算法来聚合用户上传的模型，显著提高了

模型的性能，并且减少了每个用户的训练时间。Xie 等［29］提出了一种基于 FL 的语义通信框架，用于物

联网设备的多任务分布式图像传输。Wei 等［30］提出了一种联邦语义学习框架（Federated semantic 
learning， FedSem），在基于基站的语义信道解码器的协调下，协同训练多个设备的语义信道编码器，可

以充分利用分布式数据和计算资源。Xie 等［31］面向车牌识别任务，开发了一个自动编码器来执行语义

编码，同时采用异步联邦学习算法，以确保训练过程能够容忍传输延迟。文献［32］面向文本传输任务

提出了一种语义通信系统模型的 FL 部署方式，能够使模型有效地学习到用户数据的特征。

在上述采用 FL 的多用户语义通信研究中，通常采用的是 FedAvg 算法。该算法根据各设备上的本

地数据集量的大小，为每个设备上传的模型参数赋予一个权重，然后对模型参数进行加权平均。然而

FedAvg 算法没有考虑到不同用户数据集之间存在的非独立同分布（Non independent and identically dis‑
tributed， Non‑IID）特性［33］，导致所有用户共享同一个全局模型可能会与各用户的本地数据偏离较大，

影响其语义信息的提取性能。个性化联邦学习（Personalized federated learning， pFL）机制通过优化 FL
模型聚合过程来构建个性化模型，可以在全局模型的基础上为每个用户训练一个定制的模型，以适应

自己的数据分布［34‑35］。

鉴于上述考虑，本文面向多用户语音传输场景，提出一种使用超网络［36］个性化联邦学习的深度学

习语义通信系统（Deep learning based semantic communication system using federated learning based on 
hypernetworks， DeepSC‑FedHN）。考虑到各个用户本地的语音数据存在说话人身份、地区或性别等差

异，利用 FL 框架，采用超网络为每个用户生成一个个性化的聚合权重矩阵，对每个本地基础模型

DeepSC‑S［21］进行个性化更新。本文构建了一种结合 pFL 和 FedAvg 的多用户语音语义传输系统。该

系统考虑到各用户语音数据分布的差异性，结合 FedAvg 和 pFL，对各用户的本地模型进行聚合更新，

获得更匹配本地数据分布特性的个性化本地模型，提高各用户学习提取语音语义信息的能力。然后，

提出了一种基于超网络的改进 pFL 算法。该算法考虑到语义编码器的不同模块在语义信息的学习和

提取的过程中发挥的作用不同，使用超网络为每个用户的语义编码器模块生成个性化的聚合权重矩

阵，以产生个性化语义编码器参数。同时，考虑到信道编解码器和语义解码器不参与本地用户数据语

义特征的提取，使用 FedAvg 算法对各用户的信道编解码器和语义解码器进行加权聚合更新。在 TIM ‑
IT 数据集和 Edinburgh DataShare 语音数据集上的实验结果表明，本文提出的 DeepSC‑FedHN 在客观语

音质量评估（Perceptual evaluation of speech quality， PESQ）、信号失真比（Signal‑to ‑distortion ration， 
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SDR）和短时客观可懂度（Short‑time objective intelligibility， STOI）上均优于本地训练策略、基于 Fe‑
dAvg 的训练策略和基于 FedProx［37］的训练策略。另外，本文所提出的 DeepSC‑FedHN 的模型聚合计算

量显著低于采用分层个性化联邦学习的深度学习语义通信系统（Deep learning based semantic communi‑
cation system using layer‑wised personalized federated learning， DeepSC‑pFedLA），对未知说话人数据的

泛化性也更好。

1 相关工作  

1. 1　DeepSC‑S模型　

DeepSC‑S 模型结构如图 1 所示。DeepSC‑S 模型由语义编码器、信道编码器、信道解码器和语义解

码器组成。在发送端，语音信号分帧后先通过语义编码器学习到表征语义信息的特征，再经信道编码

器将语义特征编码为符号序列，经由无线信道传输。在接收端，接收到的特征先通过信道解码器解码，

再经过语义解码器解码得到恢复的语音帧，进而对各帧进行重叠相加，重构语音信号。

在 DeepSC‑S 模型中，信道编码器和信道解码器各由 1 个包含 2 维卷积模块的 CNN 层构成，语义编

码器和语义解码器由若干个基于注意力机制的 SE‑ResNet 模块组成。SE‑ResNet 模块包含 1 个分割

层、1 个过渡层、1 个 SE 层和 1 个 CNN 层，该模块被用于学习和提取语音信号的基本特征。

1. 2　超网络　

超网络是一种为另一个神经网络生成权重的神经网络，一般由若干个简单的全连接层组成，其输

入是可学习的嵌入。超网络可以在训练过程中动态地生成适应当前任务的权重，因此可以用来为每个

用户生成个性化本地模型。文献［38］首次将超网络用于 pFL，在服务器上学习 1 个超网络，为每个用户

的本地模型直接输出个性化模型。与文献［38］不同，文献［39］使用超网络为各用户本地模型的每一层

输出聚合权重，从而得到个性化的本地模型。在文献［38‑39］中，基于超网络的 pFL 方法都是为 CNN 模

型设计的，并没有考虑到更为复杂的模型。考虑到文献［38‑39］在处理复杂模型方面的局限性，本文针

对语音语义传输模型，提出采用超网络为各用户语义编码器中的各个模块生成不同的聚合权重来更新

本地模型参数，这与文献［38］采用超网络直接输出个性化模型、文献［39］采用超网络输出每一层聚合

权重的方法不同。

2 系统模型  

本文考虑在频谱资源受限的无线网络部署一个面向多用户语音传输的语义通信系统。该系统由 N

图 1　DeepSC-S 模型结构

Fig.1　Structure of DeepSC-S model
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对用户和 1 个边缘服务器 BS 组成，每个用户都采用设备到设备（Device to device， D2D）方式进行无线

通信，如图 2 所示。例如在智能家居或智慧工厂等场景中，各发送端用户向接收端用户传输语音指令等

信息。在图 2 中，本地用户对 U i、U ′i 训练一个本地的 DeepSC‑S 模型，然后将训练好的本地模型的语义

编码器参数 θi、信道编码器参数 ϕi、信道解码器参数 χi 和语义解码器参数 φi 上传到边缘服务器 BS 中，

BS 通过模型聚合模块更新全局模型。

边缘服务器 BS 的模型聚合模块由超网络聚合模块和 FedAvg 聚合模块组成。其中，超网络聚合模

块由 N 个超网络 HN 1 ( ν1；ψ1 )，HN 2 ( ν2；ψ2 )，…，HN N ( νN；ψN )组成。HN i ( ν i；ψi )为第 i 个用户对 U i、U ′i
生成个性化的聚合权重矩阵 α i，然后根据 α i 生成个性化的语义编码器参数 θ̄ i。FedAvg 聚合模块采用加

权平均的聚合方式对各 DeepSC‑S 模型的其他部分进行聚合更新，得到全局模型 ϕg、χg、φg。

一旦全局模型更新完成，边缘服务器 BS 将 θ̄ i、ϕg、χg、φg 返回给各用户，用户将本地模型更新为接收

到的全局模型，并启动本地模型训练过程，进行下一轮的 FL 训练。

2. 1　用户本地模型训练　

在每个 FL 训练轮次中，每个用户使用本地数据集训练各自的 DeepSC‑S 模型。以第 i个用户对 U i、

U ′i 为例进行说明，这里为简便起见，将参数下标省略。原始语音序列 s经过语义编码器 Sθ (⋅)和信道编码

器 Cϕ (⋅)，得到编码后的语义信息序列 x，即

x= Cϕ ( Sθ ( s ) ) （1）
记信道参数为 h，则接收端接收信号 y为

y= h∗x+ n （2）
式中：n~N ( 0，σ 2 I )表示均值为 0、方差为 σ 2 的高斯噪声，“∗”表示卷积运算。

接收信号 y经信道解码器 Cχ (⋅)和语义解码器 Sφ (⋅)后，恢复的解码信号 ŝ为

ŝ= Sφ ( Cχ ( y ) ) （3）
采用均方误差（Mean‑squared error， MSE）损失函数 LMSE 进行本地训练，LMSE 定义为

LMSE ( θ，ϕ，χ，φ )= ∑
j = 1

B

( s j - ŝ j )2 （4）

式中 B 为批次大小。

图 2　DeepSC-FedHN 系统结构图

Fig.2　Architecture diagram of DeepSC-FedHN system
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用户完成本地训练后，将各自的本地模型参数，即 { θ1，ϕ1，χ1，φ1 }，{ θ2，ϕ2，χ2，φ2 }，…，{ θN，ϕN，χN，φN }
发送至服务器进行模型聚合。

2. 2　服务器模型聚合更新　

边缘服务器 BS 接收到各用户的本地模型参数后，通过模型聚合模块对模型参数进行聚合。模型

聚合模块由基于 FedAvg 算法的聚合模块和超网络聚合模块两部分组成。其中，由于信道编解码器和

语义解码器不参与语义信息的提取，采用基于 FedAvg 算法［26］的聚合模块对信道编码器、信道解码器和

语义解码器的模型参数进行更新，以得到一个泛化性更高的公共模型。

2. 2. 1 超网络聚合模块

鉴于各用户数据分布有差异，并且语义编码器中的各 SE‑ResNet 模块在提取语义特征的过程中发

挥的作用有所不同［21］，本文考虑在服务器上为每个用户定制一个专用的超网络，为这个用户的各 SE‑
ResNet模块生成聚合权重。

如图 3 所示，超网络由若干个全连接层组成，在最后一层全连接层后紧接着归一化处理，其输入是

嵌入向量 ν i，输出权重矩阵 α i 为

α i = HN i ( ν i；ψi )= { α1
i，α

2
i，⋯，αn

i }=

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

úα1，1
i α1，2

i ⋯ α1，n
i

α2，1
i α2，2

i ⋯ α2，n
i

⋮ ⋮ ⋱ ⋮
αN，1

i αN，2
i ⋯ αN，n

i

    （5）

式 中 ：ψi 为 面 向 用 户 U i 的 超 网 络 的 参 数 ，αn
i 表 示 第 n 个

SE‑ResNet 模块的聚合权重向量 ，αj，n
i 表示用户 U j 第 n 个

SE‑ResNet 模块的聚合权重。通过在超网络的输出前添加归

一化处理，使得式（5）满足 ∑
j = 1

N

αj，n
i = 1，即所有用户第 n 个

SE‑ResNet模块权重的和为 1。超网络的输出权重矩阵 α i 包含

了语义编码器中各 SE‑ResNet 模块的聚合权重，通过模型聚

合更新的方式，能够有效地加强各个用户彼此间之间的协作。

服务器收到各用户完成本地训练的模型参数后，使用超网络聚合模块为每个用户生成个性化的语

义编码器模型。具体地，设 θi = { θ 1
i ，θ 2

i ，⋯，θ n
i }为用户 U i 经过本地训练后的语义编码器中 SE‑ResNet

块的模型参数，其中 θ n
i 表示用户 U i 的第 n 个 SE‑ResNet 块的参数。令 θn = { θ n

1，θ n
2，⋯，θ n

N }表示所有用

户第 n 个 SE‑ResNet 块参数的集合，根据超网络 HNi ( ν i；ψi ) 的输出 α i，用户 U i 的语义编码器中

SE‑ResNet块的模型参数更新为

θ̄ i = { θ̄ 1
i ，θ̄ 2

i ，⋯，θ̄ n
i }= { θ1，θ2，⋯，θn } ·α i （6）

式中：θ̄ n
i = ∑

j = 1

N

θ n
j αj，n

i ，“·”表示点积运算。

2. 2. 2 模型聚合计算量分析

单个 CNN 层的参数量可以表示为［40］

P = C out ×( C in × K 2 + 1 ) （7）
式中：C out 表示输出通道数，C in 表示输入通道数，K 表示卷积核大小。由文献［21］可得，单个 SE‑ResNet
块由 3 个 CNN 层组成，则单个 SE‑ResNet 块参数量为 3P。超网络输出权重矩阵 α i 的大小为 N × n，因

此得到 θ̄ i 需要的计算量为 3P × N × n。DeepSC‑S 模型信道编解码器各由 1 层 CNN 层组成，语义解码

器由 3n + 1 层 CNN 层组成，因此 FedAvg 聚合模块的计算量为 P ×( 3n + 1 )× N，聚合模块得到 θ̄ i、ϕg、

图 3　超网络的工作流程

Fig.3　Workflow of hypernetworks
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χg、φg，总的模型聚合计算量为 3P × N × n + P ×( 3n + 1 )× N。

而采用类似文献［39］的方法，令超网络为 DeepSC‑S 模型的所有层生成聚合权重时，模型的总层数

为 6n + 3，超网络输出的聚合权重矩阵大小为 N ×( 6n + 3 )，则得到个性化模型需要的计算量为 P ×
N ×( 6n + 3 )2。

3 训练过程  

用户利用本地的数据对各自的本地模型进行训练，经过 E 个训练轮次后，将其模型参数上传到云端

服务器进行模型聚合。与文献［21］类似，本地模型训练使用随机梯度下降（Stochastic gradient descent， 
SGD）算法。当 N 个用户对均完成 E 个训练轮次后，本地模型参数发送至边缘服务器进行模型聚合。

边缘服务器为用户 U 1，U 2，⋯，U N 各定制一个专用的超网络，超网络为用户输出用于生成个性化

语义编码器的聚合权重矩阵 α i。超网络的输入 ν i 和超网络的参数 ψi 采用链式法则［39］进行更新

Δν i = ( ∇ ν i
θ̄ i ) Δθi =[ { θ1，θ2，⋯，θn }× ∇ ν i

HNi ( ν i；ψi ) ]T Δθi （8）
Δψi = ( ∇ψi

θ̄ i ) Δθi =[ { θ1，θ2，⋯，θn }× ∇ ψi
HNi ( ν i；ψi ) ]T Δθi （9）

式中：Δθi = θ ( t + 1 )
i - θ ( t )

i 为用户 U i 的语义编码器模型参数在本地训练前后的变化，∇ 表示求偏导。从式

（7，8）可以看出，超网络的输入 ν i 和超网络的参数 ψi 的更新与用户 U i 的语义编码器模型参数的更新有

关，因此超网络的更新方向与目标网络的更新方向一致。同时，超网络能够捕获目标网络中不同模块

之间的贡献程度［39］，因此超网络能够通过输出的矩阵 α i 有效地反映各个模块重要程度。根据式（7，8），

服务器在每个 FL 训练轮次更新用户 U i 的超网络嵌入向量和参数，然后输出聚合权重矩阵 α i。

服务器的超网络聚合模块根据式（6）得到每个用户的个性化语义编码器模型参数。同时，服务器

的 FedAvg 聚合模块采用 FedAvg 算法聚合用户的信道编码器参数、信道解码器参数以及语义解码器参

数，得到全局模型参数。模型参数完成聚合后，服务器将 θ̄ i 及 ϕg、χg、φg 发送至各用户。用户根据收到的

模型参数更新本地模型参数，启动本地模型训练过程，并进行下一轮的 FL 训练。具体的 DeepSC ‑
FedHN 算法流程如算法 1 所示。

算法 1 DeepSC‑FedHN 算法流程

初始化初始化  总通信轮次 T，局部训练轮次 E，学习率 η，初始化 DeepSC‑S 模型参数 θi、ϕi、χi、φi，超网络

参数 ψi，超网络嵌入向量 ν i

输入输入  用户 U i 的本地语音数据 s

（1） while t < T do
用户 U i ( i = 1，2，⋯，N )：
（2） 初始化本地训练轮次 e = 0
（3） while e < E do
（4） 根据 SGD 算法更新 θi、ϕi、χi、φi

（5） end while
（6） 将 θi、ϕi、χi、φi 上传至边缘服务器 BS
边缘服务器 BS：

（7） for HNi ( ν i；ψi ) ( i = 1，2，⋯，N ) do
（8） 根据式（5）输出 α i

（9） 根据式（6）得到 θ̄ i

（11） 根据式（7，8）更新 ν i，ψi

（12） end for
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（13） FedAvg 聚合模块根据 FedAvg 算法得到 ϕg、χg、φg

（14） 边缘服务器将 θ̄ i、ϕg、χg、φg 发送回各用户

（15） 用户 U i 用 θ̄ i、ϕg、χg、φg 更新模型参数

（16） t = t + 1
（17） end while
输出输出  θ̄ i、ϕg、χg、φg

4 实验设置  

4. 1　联邦实验环境及模型参数设置　

设置用户数目为 N = 4，本地模型训练轮次 E = 10，学习率 η = 0.001，优化器采用 SGD，批处理大

小 B = 32，全局通信轮次 T = 40。超网络由 3 个全连接层组成，超网络的输入嵌入向量 ν i 维度为 100，
学习率为 0.000 5，优化器使用 SGD。

本地模型 DeepSC‑S 模型参数根据文献［21］进行设置，其中语义编码器的 SE‑ResNet 模块数为 6，
训练和测试过程中的信道类型为高斯信道、瑞利信道和莱斯信道，训练时信道的信噪比（Signal‑to‑
noise， SNR）同文献［21］一致，设置为 8 dB，测试时的 SNR 设置为 0~14 dB。实验使用 Python 中的深度

学习工具包 Pytorch（版本为 1.13.1）进行实现，在 1 张 GeForce RTX 3090 GPU 上进行。

4. 2　数据集　

本文实验数据集采用 TIMIT 数据集，该数据集的语音采样频率为 16 kHz，一共包含 6 300 条语句，

其中训练集包含 4 620 条语句，测试集包含 1 680 条语句，由来自美国 8 个主要方言地区的 630 个说话人

的语句组成，其中每个说话人说出给定的 10 个句子。对 TIMIT 数据集分别按照独立同分布（Indepen‑
dent and identically distributed， IID）和 Non‑IID 进行划分。

（1） IID 划分方式。用户 U 1、U 2、U 3、U 4 从训练集的 8 个地区中分别随机抽取相同数量的语音作为

自己的本地训练集，随机地从测试集的 8 个地区中抽取相同数量的语音作为自己的测试集。各用户抽

取的训练数据和测试数据均无重叠。

（2） Non‑IID 划分方式。用户 U 1、U 2、U 3、U 4 依次从训练集的 8 个地区中选择 2 个地区的语音数据

作为自己的本地数据集，对于测试集也进行类似的处理。图 4 给出了 IID 划分方式和 Non‑IID 划分方式

下的各用户数据分布。

图 4　不同划分方式下各用户数据分布（TIMIT 数据集）

Fig.4　Distribution of user data under different partition methods (TIMIT dataset)
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同时，本文还使用 Edinburgh DataShare 语音数据集和 THCHS‑30 语音数据集进行补充实验。Ed‑
inburgh DataShare 语音数据集的训练集包含了 28 个说话人的共 11 572 条英文语音数据，测试集由与训

练集说话人不同的 2 个说话人的共 822 条英文语音数据组成。对该数据集进行如下划分，将训练集按

说话人分为 4 组，每组包含 7 个说话人的语音数据，用户 U i ( i = 1、2、3、4 )选择其中的 1 组作为自己的本

地数据集进行模型训练。将该数据集的测试集作为每个用户的测试集进行模型测试。

THCHS‑30 语音数据集是由清华大学语音与语言技术中心出版的开放式中文语音数据库，该数据

集的训练集包含了 30 个说话人的共 10 893 条中文语音数据，测试集由与训练集说话人不同的 10 个人

的 2 496 条中文语音数据组成。对该数据集进行如下划分，将训练集按说话人分为 4 组，每组包含 7 个

说话人的语音数据（其中 1 组包含 9 个说话人），用户 U i ( i = 1、2、3、4 )选择其中的一组作为自己的本地

数据集进行模型训练。将该数据集的测试集作为每个用户的测试集进行模型测试。

4. 3　对比方案　

将本文所提出的 DeepSC‑FedHN 方法与本地训练策略、基于 FedAvg 的训练策略、基于 FedProx 的

训练策略和 DeepSC‑pFedLA 进行了性能对比。对比方案具体描述如下：

（1） 本地训练：所有用户只进行本地训练，不进行全局模型聚合。

（2） FedAvg［26］：采用 FedAvg 算法对各用户本地训练得到的 DeepSC‑S 模型参数进行聚合更新。

（3） FedProx［37］：采用 FedProx 算法对各用户本地训练得到的 DeepSC‑S 模型参数进行聚合更新。

实验中设置 μ 值为 0.1，μ 为控制损失函数中近端项的超参数。

（4） DeepSC‑pFedLA［39］：与文献［39］类似，采用超网络为模型的所有层生成聚合权重，根据聚合权

重矩阵得到每个用户的个性化 DeepSC‑S 模型。

5 实验结果及分析  

5. 1　TIMIT数据集实验结果及分析　

图 5 为采用提出的 DeepSC‑FedHN 方法，训练阶段各用

户的均方误差（Mean‑square error， MSE）损失值与训练轮次

的关系。图 5 中 SNR=8 dB，信道为莱斯信道。从图 5 可以

看出，本文所提出的 DeepSC‑FedHN 方法可以为每个用户

生成 1 个稳定的个性化模型，模型大概在 400 个训练轮次后

达到收敛。

图 6 给出了不同方案在 IID 划分方式下的 TIMIT 数据

集下的 PESQ、SDR 和 STOI 随 SNR 的变化曲线。从图 6 可

以看出，与本地训练方案、FedAvg 方案、FedProx 方案相比，

在 高 斯 信 道 、瑞 利 信 道 和 莱 斯 信 道 下 ，本 文 提 出 的

DeepSC‑FedHN 方法的 PESQ 得分、SDR 值以及 STOI 得分

均更高。同时，从图 6 还可以看出，与 DeepSC‑pFedLA 方案

相比，本文提出的 DeepSC ‑FedHN 方法在 IID 划分方式下

TIMIT 数据集上的性能总体均更优，这说明了在各用户数据具有相同分布的情况下，仅针对提取语义

信息的重要模块进行个性化参数更新，能够有效地提升模型的性能。

图 7 给出了不同方案在 Non‑IID 划分方式下 TIMIT 数据集的 PESQ、SDR 和 STOI 随 SNR 的变化

曲线。从图 7 中可以看出，与本地训练方案、FedAvg 方案、FedProx 方案相比，在 3 种信道下，本文提出

图 5　各用户 MSE 损失值随训练轮次的变化

Fig.5　Variation of MSE loss values of each 
user with training epochs
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的 DeepSC‑FedHN 方法在 PESQ、SDR 以及 STOI上的性能更优。同时，从图 7 还可以看出，在 Non‑IID
划分方式下的 TIMIT 数据集上，本文所提出的 DeepSC‑FedHN 方法的 PESQ 得分、SDR 值和 STOI 得
分要低于 DeepSC‑pFedLA 方案。这是因为本文提出的 DeepSC‑FedHN 方法仅对模型的重要模块参数

进行更新，而 DeepSC‑pFedLA 对模型所有层参数都进行了更新，得到的模型个性化程度更高，与

Non‑IID 划分方式下数据集的非独立同分布的特点更匹配。但是本文提出的 DeepSC‑FedHN 方法在模

型聚合时的计算量远小于 DeepSC‑pFedLA 方法。具体地，根据 2.2 节中的计算量分析可以得到，在本

实验环境下，采用 DeepSC‑pFedLA 方法在模型聚合时的计算量约为 1.623×108，采用 DeepSC‑FedHN
模型聚合时的计算量约为 4.162×106，仅为前者的 2.5%，大幅减少了模型聚合所需的计算量。

5. 2　Edinburgh DataShare数据集和 THCHS‑30数据集实验结果及分析　

图 8 给出了不同方案在在 Edinburgh DataShare 的语音数据集下的 PESQ、SDR 和 STOI 随 SNR 的

变化曲线。与在 TIMIT 数据集上得到的结果相似，本文提出的 DeepSC‑FedHN 方法与 4 种对比方案相

比，在 3 种信道下均取得了更高的 PESQ 得分、SDR 值以及 STOI 得分，这表明本文提出的 DeepSC‑

图 6　不同方法在 IID 划分方式下的 TIMIT 数据集上的 PESQ 得分、SDR 值和 STOI得分

Fig.6　PESQ scores, SDR values and STOI scores of different methods on TIMIT datasets divided by IID
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FedHN 方法具有泛化性。值得提出的是，在 Edinburgh DataShare 测试集下，本文提出的 DeepSC ‑
FedHN 性能要优于 DeepSC‑pFedLA。这是因为该数据集中测试集包含的 2 个说话人与训练集中的 28
个说话人都不同，在本实验中相当于模拟了一个新的用户。而本文提出的方法对于语义解码器部分的

模型聚合采用 FedAvg 算法，能够适当降低模型整体的个性化，提高模型对未知数据分布的泛化性，所

以当推广到数据分布未知的新用户时，本文提出的方法能够获得更好的性能。

图 9 给出了不同方案在 THCHS‑30 语音数据集下的 PESQ、SDR 和 STOI 随 SNR 的变化曲线。与

在 Edinburgh DataShare 数据集上得到的结果相似，本文提出的 DeepSC‑FedHN 方法与 4 种对比方案相

比，在 3 种信道下均取得了更高的 PESQ 得分、SDR 值以及 STOI 得分，这进一步证明了本文提出的

DeepSC‑FedHN 方法在面对新用户时的泛化性。同时，本文提出的 DeepSC‑FedHN 方法在中文数据集

THCHS‑30 上取得了与在英文数据集 Edinburgh DataShare 上类似的性能，表明了本文提出的 DeepSC‑
FedHN 方法对于不同语种的泛化性。

图 7　不同方法在 Non-IID 划分方式下的 TIMIT 数据集上的 PESQ 得分、SDR 值和 STOI得分

Fig.7　PESQ scores, SDR values and STOI scores of different methods on TIMIT datasets divided by Non-IID
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5. 3　模型参数量及推理延迟分析　

在模型参数量方面，本文使用的本地模型为 DeepSC‑S 模型，模型参数根据文献［21］进行设置，其

中语义编码器和语义解码器的 SE‑ResNet 模块数均为 6，模型的参数总量约为 2.7×106，属于轻量级模

型。同时，本文所提 DeepSC‑FedHN 方法在边缘服务器部署的超网络模型由 3 个全连接层组成，超网络

总的参数量约为 0.02×106，模型参数量远小于本地模型，可近似忽略。因此与本地 DeepSC‑S 模型相

比，本文所提的 DeepSC‑FedHN 方法几乎未增加模型的参数量，在本地资源消耗相同的情况下，提升了

模型的整体性能。

在模型推理延迟方面，本文使用 TIMIT 数据集中的测试集对模型的推理时间进行了测试分析。

TIMIT 数据集中的测试集共有 1 680 条语句，语音长度为 3~7 s，本文所提 DeepSC‑FedHN 方法下本地

模型的推理延迟为 11.67~12.33 ms，平均推理延迟约为 12 ms，远小于语音持续。因此，后续经过合理

设计，本地用户能够实现实时高效的语音传输。

图 8　不同方法在 Edinburgh DataShare 的语音数据集上的 PESQ 得分、SDR 值和 STOI得分

Fig.8　PESQ scores, SDR values and STOI scores of different methods on Edinburgh DataShare speech dataset
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6 结束语  

本文面向多用户语音语义通信场景提出了 DeepSC‑FedHN 方法，利用超网络为每个用户输出一个

个性化的语义编码器，对其他模块使用 FedAvg 算法，使得模型在具备个性化的同时，提高整体模型的

泛化性。在 TIMIT 数据集、Edinburgh DataShare 的语音数据集和 THCHS‑30 数据集上的实验结果表

明，与本地训练、FedAvg 和 FedProx 方案相比，所提 DeepSC‑FedHN 方法在 PESQ、SDR 以及 STOI 性
能指标上有总体上的提升。同时与 DeepSC‑pFedLA 方法相比，本文所提 DeepSC‑FedHN 方法大幅减

少了模型聚合计算量，并且在面对未知数据时有更好的泛化性能。
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刘月照  等：基于个性化联邦学习和语义通信的语音传输系统

Speech Transmission System Based on Personalized Federated Learning and 
Semantic Communication

LIU　Yuezhao， GUO　Haiyan*， WANG　Tianshun， CHEN　Feifei

(School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, 
China)

Abstract： In multi-user speech transmission scenarios， the statistical heterogeneity of data among different 
users results in the transmission performance degradation if a uniform semantic communication based 
speech transmission model is used by all users. To address this problem， this paper proposes a novel deep 
learning-based semantic communication system using federated learning based on hypernetworks （DeepSC-

FedHN）， enabling each user to obtain a personalized model adaptive to its own data characteristics without 
compromising data privacy. Specifically， considering that different modules of the semantic encoder play 
different roles in extracting semantic information， the edge server employs a per-user hypernetwork to 
generate a personalized aggregation weight matrix by dynamically evaluating the importance of each module 
in the semantic encoder. The generated aggregation weight matrix is then used to update the corresponding 
model parameters， effectively tailoring the global knowledge to different users’ needs. Concurrently， since 
the channel codec and semantic decoder are not involved in extracting the semantic features of each local 
users’ data， the standard federated averaging （FedAvg） algorithm is used to perform weighted aggregation 
and updates on the channel codecs and semantic decoders of all the users. Experimental results on TIMIT 
and Edinburgh DataShare datasets show that the proposed DeepSC-FedHN scheme leads to significant 
improvement of speech transmission performance. Specifically， it outperforms conventional local training， 
the standard FedAvg approach， the federated proximal （FedProx） method， and the layer-wise 
personalized FL scheme （DeepSC-pFedLA） in terms of perceptual evaluation of speech quality （PESQ）， 
signal-to-distortion ratio （SDR） and short time objective intelligibility （STOI）， particularly in non-

independent and identically distributed （non-IID） data settings. Additionally， the proposed DeepSC 
FedHN model exhibits better generalization ability for unseen speakers’ data and also demonstrates 
significantly lower computational overhead for model aggregation compared to the DeepSC pFedLA. We 
conclude that the integration of a hypernetwork for generating personalized weights offers a highly effective 
mechanism for tackling data heterogeneity in federated semantic communication systems， leading to 
superior and more adaptable speech transmission performance while fully preserving user data privacy.
Highlights:

1. Propose a novel deep learning-based semantic communication system using federated learning based on 
hypernetworks （DeepSC-FedHN） for personalized multi-user speech semantic communication.
2. Use a hypernetwork to generate user-specific aggregation weights for encoders and aggregates channel 
codec and decoder via standard federated learning.
3. Achieve superior performance under non-IID data while preserving privacy.
Key words: speech transmission; semantic communication; federated learning; hypernetwork
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