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面向 Transformer 语音识别模型的高迁移通用对抗样本

生成方法

王 振， 韩纪庆， 何勇军， 郑铁然， 郑贵滨

（哈尔滨工业大学计算机科学与技术学院，哈尔滨  150001）

摘 要： Transformer 模型的出现使得语音识别的正确率有了巨大提升。随着深度学习技术的发展，通

过对抗样本来攻击语音识别系统，以了解该系统的脆弱性并进行完善，进而提高识别系统的鲁棒性。

由于通用语音对抗样本对于任意语音都有效，更是受到了广泛关注，其关键问题是如何提高对抗样本

的迁移性，进而实现高攻击成功率。本文利用 Transformer 类语音识别模型结构特征的相似性，通过使

扰动后的语音与原始语音的中间层特征尽可能不同，以改变其中间层特征表示的规律，实现有效的通

用对抗攻击。鉴于通用对抗样本需要利用与样本无关的底层声学信息，而与样本依赖的语义信息会抑

制其性能，因而通过控制注意力梯度以减弱通用对抗样本对于语义上下文特征的学习，进而实现通用

对抗样本的高迁移性。实验结果表明，本文所提出的通用对抗样本生成方法可以有效地提高对抗样本

在 Transformer 类语音识别模型之间的迁移性。
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引   言  

语音识别技术能够将接受到的语音转录为文本，是语音人机交互系统的核心功能。近年来，Trans‑
former 模型的出现使得语音识别的正确率有了巨大提升。随着深度学习技术的发展，研究者开始研究

通过对抗样本来攻击语音识别系统，以了解该系统的脆弱性并进行完善，进而提高识别系统的鲁棒性。

这是近年来语音领域研究的一个热点问题［1］。对抗样本生成技术通过对预测样本故意添加细微的干

扰，从而导致模型能以高置信度输出一个错误的目标类别结果［2］，进而达到攻击语音识别模型的目的。

已有研究表明，通过修改音频信号能产生错误的类别结果，进一步证实了语音对抗样本的存在［3］。

语音对抗样本生成方法根据对语音识别模型信息掌握的程度不同，可分为白盒攻击和黑盒攻击。

对前者，生成对抗样本时完全了解语音识别模型的结构和参数信息，能有目标的生成对抗样本［4‑7］。对

后者，由于无法掌握被攻击模型的信息，因此攻击难度更大。一些研究通过利用白盒模型作为代理模

型，来生成具有迁移性的语音对抗样本［8‑9］，即针对一种深度学习模型生成的对抗样本在迁移到另一个

不同结构的模型后仍然具备一定的攻击能力，其攻击效果越好说明该对抗样本越具有高迁移性。也有

收稿日期：2024‑03‑30；修订日期：2024‑10‑12



数据采集与处理  Journal of Data Acquisition and Processing Vol. 41, No. 1, 2026

一些工作基于查询黑盒模型的输出信息来指导生成语音对抗样本［10‑11］。在现实场景中，攻击者通常难

以获取识别模型的内部信息，因此黑盒攻击更具有实际的意义。然而，现有的黑盒攻击方法往往通过

优化对抗样本生成的迭代过程［8‑9］，以减弱对抗样本在代理模型上的过拟合，从而提高迁移性。尽管这

类方法适用于各种类型的语音识别模型，但对抗样本的迁移能力有限。

目前大多语音对抗样本生成方法都是样本依赖的，即对抗样本生成方法对每个输入语音都单独产

生对抗扰动。典型的工作有基于梯度符号［4，12］、目标优化［13］以及基于遗传算法［14‑15］的生成方法。而在

实际应用场景中，更希望生成的扰动能对任何样本都有效。为此，出现了通过条件变分自动编码器来

合成不依赖于任何现有数据的对抗样本生成方法［16］。然而，该方法需要完全重新合成音频，并不适用

于对已有语音进行扰动生成的情况。已有研究证实，存在适用于任意语音的通用对抗扰动（Universal 
adversarial perturbation，UAP）［17‑18］。然而，由于语音长度不固定的特点会使通用对抗样本性能受到影

响。为解决该问题，出现了使用定长通用噪声的重复回放来适应不同长度的输入语音，进而实现通用

扰动的方法［19］。此外，有研究发现通过训练生成器模型也可得到通用对抗扰动［20］。与样本依赖的方法

相比，通用对抗扰动则对大部分样本都有效，更易达到攻击的目的，同时也能大大提升扰动添加的速

度。然而，由于语音具有时序依赖的特点，通用扰动对生成算法要求的更高且难以获得。同时，现阶段

主流的语音识别模型大多基于 Tranformer 模块来实现，如 Wav2vec2、WavLM 和 Data2vec 等，其结构的

相似性为研究高可迁移性的通用对抗样本提供了条件。鉴于模型特征中存在着相似性，通过攻击这种

相似特征，可以实现通用对抗样本的高迁移性。

基于以上分析，本文使用白盒语音识别模型作为代理模型，通过利用模型特征的相似性来生成高

度可迁移的通用语音对抗样本，以攻击不同的黑盒 Transformer类语音识别模型。具体而言，鉴于 Tran‑
former类语音识别模型中间层结构的相似性，因而对该结构特征的扰动更能适用于其他模型。因此，本

文通过使扰动后的语音与原始语音的中间层特征尽可能不同，以改变其中间层特征表示的规律，进而

实现有效的对抗攻击。此外，鉴于通用对抗样本需要利用非样本依赖的底层声学信息，而语音识别模

型中注意力层包含的语义信息，会使对抗样本的迁移性受到影响。为此，通过控制注意力梯度以减弱

通用对抗样本对于语义上下文特征的学习，进而实现通用对抗样本的高迁移性。实验验证了所提出方

法的有效性。

1 基于高可迁移性的通用对抗样本生成方法  

本文方法的整体框架如图 1 所示。其中上面部分为训练阶段，下面部分为应用推理阶段。在训练

阶段，先生成随机的对抗样本并将其叠加到语音样本上，然后输入到语音识别模型中，通过扰动其中间

层特征以及使其分类损失最大化，并在反向传播过程中控制注意力梯度，以优化更新通用对抗样本，进

而实现其高迁移性。在推理阶段，输入语音直接加上通用对抗样本，输入到语音识别模型中，由于目标

模型与代理模型中间层特征相似，最终识别结果出错率更大。

1. 1　通用对抗样本生成方法　

本文目的是找到一种通用的音频扰动，当将其添加到任何语音波形时，将以高概率导致语音识别

模型在转录中出现错误，其优化目标可表示为

ì
í
î

maxδ { P ( D ( x+ δ )≠ D ( x ) ) }，x~μ
s.t.  ||δ||∞ ≤ ε

（1）

式中：μ为输入样本分布，x是从 μ中随机采样的输入语音样本，D ( x )为代理白盒语音识别模型对语音

输入 x的输出类别的概率值，δ为对抗性扰动，|| ⋅ ||∞ 为无穷范数表示向量中绝对值最大的元素，约束条

件保证扰动的无穷范数小于 ε。
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为了解决上述问题，采用文献［16］提出的通用对抗性扰动算法来寻找通用对抗性扰动，在每次迭

代中，需要解决以下优化问题

ì
í
î

Δδ i ← arg min r ||r||∞
s.t.  CER ( C ( x i + δ+ r )，C ( x i ) )> t

（2）

式中：r为每一批样本迭代中产生的扰动，将所有样本产生的扰动叠加起来即为通用对抗扰动，CER (⋅)
表示字符错误率用于衡量两个文本序列之间的差异程度，C (⋅)表示识别模型输出的字符，约束条件表示

每批样本生成的对抗扰动 r的字符错率需要大于 t，即攻击成功率。

为提升通用对抗样本的可迁移性，使其针对 Transformer 类的语音识别模型有更好的性能，拟通过

利用模型特征的相似性来生成高度可迁移的通用语音对抗样本。

1. 2　中间层模块特征攻击方法　

鉴于对 Transformer 类的语音识别模型，其中间层特征一般描述语音信号底层的局部声学信息，同

一语音的这些特征在不同结构的深度语音模型中具有相似性，同时对中间层特征的扰动也更能适用于

其他模型。因此，本文通过使扰动后的语音与原始语音在中间层网络的特征尽可能不同，以改变其特

征表示的规律性或分布，进而使得识别结果产生错误。

考虑到对同一深度神经网络，不同中间层描述的局部声学信息也不同，它们对扰动效果的影响也

不同。本文拟通过加权方式来引入多层特征，以改变对扰动效果有影响的浅层特征表示的规律性，进

一步提高代理模型生成的通用扰动迁移到黑盒模型上的攻击成功率。

基于代理模型中间层特征的通用对抗语音样本优化目标可表示为

ì

í

î

ïïïï

ïïïï

maxδEx~μ∑
l = 1

k

λl
||D l ( x+ δ )- D l ( x ) ||2

||D l ( x ) ||2
+ CELoss( Dx+ Δ ( x+ δ )，1y )

s.t.  ||δ||∞ ≤ ε

（3）

图 1　基于高可迁移性的通用对抗样本生成方法框架

Fig.1　Framework of a general adversarial example generation method with high transferability
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式中：D l (⋅)表示代理白盒语音模型中间层 l 的输出；λl 为权重系数；第 1 项利用 Transformer 类模型中间

层特征具有相似性，使得扰动后的特征尽可能与原始语音不同；第 2 项 CELoss(⋅)为深度语音模型的交

叉熵损失函数，计算对抗语音样本与全 1 类别向量 1y 的交叉熵，使模型输出结果尽可能出错。同时，约

束条件保证扰动尽可能小。

此外，由于某些层的特征可能比其他层的特征更鲁棒，难以对其进行扰动，因此对每层特征施加的

扰动权重应该不同。由于模型特征的鲁棒性体现在模型的输入受到扰动后输出的变化程度，输出变化

越小说明模型的鲁棒性越好，而输出的变化程度可以体现在加入扰动后反向传播变化的大小。为此，

对鲁棒性差的中间层设计更大的权重，使对抗扰动能针对鲁棒性差的中间层进行攻击，相应的自适应

权重系数表示为

λl = exp ( ) ∇D l ( x+ δ ) / ∑l
∇D l ( x+ δ ) （4）

式中 ||∇D l ( x+ δ ) || 为中间层 l 在加入对抗扰动后的反向传播梯度的模。该值越大说明该层特征越容

易被扰动，即越不鲁棒，因此需要使用较大的权重进行训练，以提升对抗样本的攻击成功率。在实验中

发现，该权重需要较大才能对中间层进行足够的扰动，为此设计时使用了指数型函数，适当放大该权重

系数。

1. 3　基于非语义信息的梯度反向传播控制方法　

在 Transformer 类的语音识别模型中，单个多头注意力层使用了多个自注意机制，其中每个自注意

学习其上下文特征。通过投射来自多个头部的连接输出，多头注意力层能组合来自不同表示子空间的

信息，其表示语音样本的语义信息。鉴于通用对抗样本生成更需要利用非样本依赖的非语义信息，因

此，注意力层中的语义信息会使通用对抗样本的迁移性受到影响。本文通过控制注意力梯度以减弱通

用对抗样本对于语义上下文特征的学习，进而实现通用对抗样本的高迁移性。

给定一个输入嵌入 Z ∈ RN × K，N 表示输入序列的长度，K 表示每个输入元素的嵌入维度，查询、键

和值权重W q、 W k、 W v ∈ RK × P，P 表示注意力计算特征维度，则自注意力机制为

A= softmax ( ZW q ( ZW k )T / P ) （5）
式中：A ∈ RN × N 表示注意力权重，那么这个自注意力层的输出为

Zout = A( ZW v ) （6）
因此输出 Zout 相对于输入 Z的梯度可以展开为

∂Zout

∂Z = ( E⊗ A ) ∂ ( ZW v )
∂Z +(( ZW v )T ⊗ E ) ∂A

∂Z （7）

式中：E为单位矩阵，“⊗”表示克罗内克内积。通过控制注意力梯度反向传播来减弱对于样本语义的学

习，进而提高通用对抗样本的可迁移性，即

∂Zout

∂Z = ( E⊗ A ) ∂ ( ZW v )
∂Z + α ( ( ZW v )T ⊗ E∂ ) ∂A

∂Z （8）

式中 α < 1 为控制注意力梯度传播的系数，其迫使扰动仅通过使用特征表示来利用网络，同时保证网络

中反向传播连贯，而不是利用针对样本的注意力特征。

2 实验设置与结果  

2. 1　实验设置　

本文在 wav2vec2 和 WavLM 两个语音识别模型上进行实验。wav2vec2 是一种自监督语音识别模

型，通过与噪声混合并预测掩盖的部分来进行训练。它采用编码器‑解码器架构和 Transformer 解码器，
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能够从未标记数据中自动学习音频表示，并在基准测试中展现出优异性能。WavLM 是一种基于自监

督学习的语音到文本的转换模型，由 Facebook AI Research 提出。它的目标是将音频波形转化为对应

的文本序列，实现语音转写的任务。WavLM 的训练过程是通过利用大量未标记的音频数据进行自动

学习。它使用自监督学习的方法，首先将原始音频波形通过编码器模型转化为特征表示，然后利用

Transformer解码器模型生成对应的文本序列。为了提高模型效果，WavLM 采用了对比目标函数，即预

测音频特征的相邻上下文，以帮助模型学习音频和文本之间的对应关系。此外，使用 LibriSpeech 作为

实验数据，它是从 LibriVox 项目的有声书籍中提取的英语口语语料库，包含超过 1 000 h 的语音录音，约

有 28 000 个独立的说话者。本文从 LibriSpeech 选取 10 h 的音频进行训练和测试。本文的通用对抗性

扰动的长度固定为 48 000 个采样点，相当于 16 kHz 下 3 s 的音频，扰动大小信噪比 SNR=30 dB。通用

对抗性扰动使用前文介绍的方法进行训练，依次对模型的不同中间层特征进行测试。

本文采用文献［16］的 UAP 作为基线系统，该方法框架与 2.1 节中一致，其优化目标为

ì
í
î

maxδ CELoss( D ( x+ δ )，1y )
s.t.  ||δ||∞ ≤ ε

（9）

本文方法是“即插即用”的，可以和其他提高迁移性的方法［20‑22］叠加使用，进一步提升通用对抗扰动

的迁移性。本文采用多种迭代更新方法进行实验测试，以验证方法的有效性。快速梯度符号法（Fast 
gradient sign method， FGSM）通过最大化损失函数一步生成对抗样本。迭代快速梯度符号法（Itera‑
tive FGSM， IFGSM）在 FGSM 方法的基础上实现可变的迭代方法。投影梯度下降法（Projected gradi‑
ent descent， PGD）通过随机生成以及多次迭代的方法实现对抗攻击。在本实验中主要针对 Transform ‑
er不同模块的鲁棒性进行测试。

使用词错率（Word error rate，WER）进行评价对抗样本性能，它是一种用于评估自动语音识别系统

性能的度量指标。WER 是通过比较识别结果和参考文本之间的差异来计算，衡量的是识别结果中与

参考文本不匹配的词的数量。对抗攻击后 WER 越大说明该对抗样本性能越好。

2. 2　性能对比　

使用上述实验设置，将 wav2vec2 作为代理模型，

WavLM 作为目标模型进行测试，通过对模型中不同中间

层进行攻击，从而生成通用语音对抗样本的迁移性能，结

果如表 1 所示。从表 1 可以看出，本文提出的方法与

FGSM 迭代方法结合对比 UAP 方法词错率有较大提升，

说明本文方法生成的通用对抗样本在迁移到另一个

Transformer 语音识别模型上，仍有较大的对抗攻击能力，

即迁移性强。。此外，通过对模型中不同中间层进行攻击，

从而生成通用语音对抗样本的迁移性能，结果如表 2 所

示 。 其 中 ，Transformer_1_output、Transformer_5_output
和 Transformer_12_output 分别表示使用中间层攻击方法攻击模型中 Transformer 模块中第 1 层、第 5 层

和第 12 层的结果。可以看出，不同层的鲁棒性不同，其扰动后结果也不同。Transformer_1_ attention、
Transformer_5_attention 和 Transformer_12_attention 分别表示使用中间层攻击方法攻击模型中 Trans‑
former 模块自注意力机制第 1 层、第 5 层和第 12 层的结果。相比直接攻击模块输出，攻击自注意力层效

果更好。Weight_all_attention 表示引入本文提出的基于扰动梯度的权重对每层注意力层进行加权扰动

的方法，可以看出其迁移后攻击成功率有较大提升。最后，α = 0 和 α = 0.1 分别表示在反向传播中控制

表 1　不同攻击方式的 WER对比

Table 1　WER comparison of different attack 
methods %

方法

Without attack
UAP_PGD

UAP_I‑FGSM
UAP_FGSM

Proposed_FGSM

WER
5.00

53.01
55.41
59.00
80.61
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注意力梯度的权重分别设置为 0 和 0.1 的情况。可以看

出，控制注意力梯度可以有效提升通用对抗样本对于语

音识别模型的迁移性和攻击成功率。并且，当 α = 0 时，

即完全舍弃注意力层的梯度，其性能并不是最佳的，这可

能是由于反向传播梯度不连贯造成的影响。而当 α = 0.1
时，既能减弱对于样本语义的学习，又能保证反向传播的

连贯性，其性能最佳。

3 结束语

本文针对通用语音对抗样本在语音识别模型中的迁

移性问题，提出了面向 Transformer 类语音识别模型的特

殊攻击方法。通过利用 Transformer 模型结构的相似性

对模型中间层特征进行攻击，提高了通用语音对抗样本

的可迁移性。同时，在反向传播过程中控制注意力梯度

大小，能够引导模型关注特定的特征，从而生成更具迁移性的对抗样本。实验结果表明，本文所提出的

方法显著提高了模型之间的迁移性，使对抗样本在不同模型上都能实现高攻击成功率。此外，本文所

提出的方法可以与现有的高迁移方法相结合，以进一步提升通用语音对抗样本的迁移性和攻击成

功率。
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Universal Adversarial Example Generation Method with High Transferability for 
Transformer‑Based Speech Recognition Models

WANG　Zhen， HAN　Jiqing*， HE　Yongjun， ZHENG　Tieran， ZHENG　Guibin

(College of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China)

Abstract： In recent years， the emergence of the Transformer model has significantly enhanced the 
accuracy of automatic speech recognition technology. This research aims to address the critical security 
vulnerabilities in Transformer-based automatic speech recognition systems by enhancing the transferability 
of universal speech adversarial examples. While Transformer models have significantly advanced speech 
processing， their susceptibility to universal adversarial perturbations remains a major concern. To exploit 
these weaknesses effectively， we propose a novel attack framework that leverages the structural 
commonalities of Transformer architectures. First， we implement a feature-level disruption strategy that 
maximizes the dissimilarity between perturbed and original speech within the middle-layer representations. 
By altering these latent representation patterns， the attack successfully shifts the internal decision 
boundaries of models. Second， given that sample-dependent semantic information often inhibits the 
generalization of universal noise， we introduce an attention gradient control mechanism. This mechanism 
strategically weakens the gradients associated with semantic context features， forcing the perturbation to 
capture underlying， sample-independent acoustic vulnerabilities instead. Finally， experimental evaluations 
conducted on LibriSpeech demonstrate the superior performance of the proposed method. The results 
indicate that our approach achieves an average word error rate of 80.6% across multiple target models， 
representing a 36.6% improvement in transferability compared to existing baseline universal attacks. These 
findings conclude that the targeted manipulation of middle-layer features combined with the suppression of 
semantic dependencies is a highly effective strategy for cross-model adversarial threats.
Highlights：
1. Propose a novel framework of universal speech adversarial attacks that maximizes middle-layer feature 
dissimilarity to exploit the structural similarities inherent in Transformer-based speech recognition models.
2. Introduce a targeted attention gradient control mechanism to decouple sample-independent acoustic 
features from sample-dependent semantic context， significantly boosting attack transferability.
3. Achieve a substantial increase in universal attack success rates across diverse Transformer architectures， 
outperforming traditional universal perturbation methods.
Key words: speech recognition; adversarial examples; black-box attack; attention mechanism
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