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Universal Adversarial Example Generation Method with High Transferability for

Transformer-Based Speech Recognition Models

WANG Zhen, HAN Jiging", HE Yongjun, ZHENG Tieran, ZHENG Guibin
(College of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China)

Abstract: In recent years, the emergence of the Transformer model has significantly enhanced the
accuracy of automatic speech recognition technology. This research aims to address the critical security
vulnerabilities in Transformer-based automatic speech recognition systems by enhancing the transferability
of universal speech adversarial examples. While Transformer models have significantly advanced speech
processing, their susceptibility to universal adversarial perturbations remains a major concern. To exploit
these weaknesses effectively, we propose a novel attack framework that leverages the structural
commonalities of Transformer architectures. First, we implement a feature-level disruption strategy that
maximizes the dissimilarity between perturbed and original speech within the middle-layer representations.
By altering these latent representation patterns, the attack successfully shifts the internal decision
boundaries of models. Second, given that sample-dependent semantic information often inhibits the
generalization of universal noise, we introduce an attention gradient control mechanism. This mechanism
strategically weakens the gradients associated with semantic context features, forcing the perturbation to
capture underlying, sample-independent acoustic vulnerabilities instead. Finally, experimental evaluations
conducted on LibriSpeech demonstrate the superior performance of the proposed method. The results
indicate that our approach achieves an average word error rate of 80.6% across multiple target models,
representing a 36.6% improvement in transferability compared to existing baseline universal attacks. These
findings conclude that the targeted manipulation of middle-layer features combined with the suppression of
semantic dependencies is a highly effective strategy for cross-model adversarial threats.

Highlights:

1. Propose a novel framework of universal speech adversarial attacks that maximizes middle-layer feature
dissimilarity to exploit the structural similarities inherent in Transformer-based speech recognition models.
2. Introduce a targeted attention gradient control mechanism to decouple sample-independent acoustic
features from sample-dependent semantic context, significantly boosting attack transferability.

3. Achieve a substantial increase in universal attack success rates across diverse Transformer architectures,
outperforming traditional universal perturbation methods.

Key words: speech recognition; adversarial examples; black-box attack; attention mechanism
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