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Fig.6 Comparison of synchronization performance among two traditional algorithms and the proposed algorithm

under different relative velocity conditions
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High-Precision Clock Synchronization Algorithm for General Aviation Swarms

CHEN Yu', HAN Tengfei', YANG Peng', XIONG Zehui®, CAO Xianbin'

(1. School of Electronic and Information Engineering, Beihang University, Beijing 100081, China; 2. Queen’s University Belfast,
Belfast BT7 INN, United Kingdom)

Abstract: High—precision clock synchronization is a fundamental technology enabling collaborative
functions such as distributed sensing, formation control, and data fusion in general aviation swarms.
However, in high-dynamic maneuvering scenarios, traditional round-trip time (RTT) synchronization
methods suffer from significant accuracy degradation due to the coupling effects of relative motion-induced
Doppler shifts and stochastic unequal reply time (URT) delays within airborne nodes. To address these
challenges, this paper proposes a novel RTT clock synchronization algorithm that integrates relative-
velocity compensation with a hybrid data-driven error correction mechanism. First, a kinematic model
considering radial relative velocity is established to explicitly correct propagation delays caused by node
mobility. Building on this, a batch-estimation-based delay modeling strategy is introduced. By extracting
statistical features from multi-cycle timing data, this method calculates the equivalent processing delay
sensitivity to eliminate systematic URT deviations. Furthermore, to address non-linear clock frequency
drifts and complex environmental noise that traditional linear filters cannot resolve, a cascaded time-
keeping architecture is developed. This architecture combines a Kalman filter (KF) for real-time state
recursion with a Back-Propagation (BP) neural network for residual prediction. The BP network utilizes a
lightweight topology to learn and compensate for non-linear errors based on inputs such as signal-to-noise
ratio (SNR) and historical residuals. Extensive Monte Carlo simulations are conducted across continuous
parameter spaces, including relative velocities up to 2 000 m/s and SNRs ranging from 4 dB to 20 dB. The
numerical results demonstrate that the proposed algorithm achieves superior robustness and accuracy.
Specifically, under strong URT interference (80 ns), the synchronization error remains stable below 0.25
ns. In low-SNR environments (4 dB), the root mean square error (RMSE) is controlled at approximately
0.2 ns, which represents a nearly tenfold improvement compared to the baseline.

Highlights:

1. A batch-estimation-based URT modeling and compensation strategy is proposed to effectively identify
and eliminate systematic internal processing latency deviations in airborne nodes.

2. A cascaded time-synchronization framework integrating Kalman filtering and BP neural networks is
designed to suppress non-linear clock drift and observation noise under high-dynamic maneuvering
conditions.

3. The algorithm achieves sub-nanosecond synchronization accuracy (approx. 0.2 ns) even under harsh
conditions (2 000 m/s relative velocity and 4 dB SNR) , outperforming PTP-MLS, RTT-RVC, and
LSTM methods significantly.

Key words: general aviation swarms; clock synchronization; round-trip time (RTT); unequal reply time

(URT); Kalman filter; back-propagation (BP) neural network
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