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W E: SRANAAREDSHRETHNR AL @G LML Shd TR, SasEHEan
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R R AT E A6 E R e 4L 4L AE & (Adaptive security control with adversarial-resilient endogenous
strategy, ASC-ARES) , Bt K& EB L X BB W Ens W R EL2EREZTAFSEZLARE
YoM N R JE 3% 4L 5 3 (Deep reinforcement learning, DRL) & R it 42, S5 L 5h ik 5 % 4 89 — R AL 33T
GAER BRY R T IR E H T K ek A & (Deep deterministic policy gradient, DDPG) Jf 3% vA i& ft %4 3h
AR, B E R R KRR MBZR =R R EEL BRBMAGKESKEL, LR ERREST R
Sl FeMEBER AR KTHRER IR mMEERBEGRS ., RE METAFHEINERLRF
4~ (Mean opinion score, MOS) A 383149 % B Ar A& m £ A ALd , £ T A P 4B K2 (Quality of
service, QOE) (M % M @4 s BB L T A F O HRMKA, FBER LW, ASC-ARESIER £
ER AR SRS AT, MOS K3 R4 H) £ 0.36%, Wil R oy & FHi%99.98% . s & ERE
B R, A% &% Bk B E A 5 ik (Fast gradient sign method, FGSM) | 4& % # & T % (Projected
gradient descent, PGD) %k & &%k # FT#H (e =2.0) G R B R F a9 EMERESWMAR D, FTHB R
W FHHAEm I AT 80N, A, H R ERIER T &AM KR B A B S KR 5
JRERIT DOV, HEF AAUE M A 2 H) T 85N e R, AR A S AAMAARET —& T
et M ARG WRE R RS £,

KER: 5 RANARG RIEBRATF T s Bk R 8% 436 4ME 4

FESES: TNI2 NXHEAREG A

SIARN . BB MRT X BN, 5F 2T AN R G 4 R P R e SR A 5 [T ). i R 4 S5 Ak B, 2026, 41
(1):66-88. L1 Yizhe, XIE Chenyu, LIU Shuming, et al. A security-aware collaborative decision optimization algorithm
for multi-UAV systems|[ J].Journal of Data Acquisition and Processing,2026,41(1) : 66-88.
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A Security-Aware Collaborative Decision Optimization Algorithm for Multi-UAV

Systems

LI Yizhe', XIE Chenyu', LIU Shuming’, WAN Ziheng', WEI Xintan®, DONG Lu"
(1. School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China; 2. School of Computer Science and En-
gineering, Southeast University, Naning 211189, China)

Abstract: This paper addresses the dual challenge of security and robustness in collaborative decision-
making for multi-UAV systems operating in dynamic and adversarial environments, where traditional
approaches that decouple safety mechanisms from control policies often fail under anomalies. To this end,
we propose adaptive security control with adversarial-resilient endogenous strategy (ASC-ARES), a novel
framework grounded in “security by design” and “security left shift” principles that systematically embeds
multi-layer constraints, including biconnected topology control, physical collision avoidance, and energy
management, into deep reinforcement learning via structured state modeling and reward shaping.
Methodologically, ASC-ARES extends the deep deterministic policy gradient (DDPG) algorithm to
handle hybrid action spaces through a dual-head policy network for joint optimization of three-dimensional
continuous attitude and discrete yaw actions. It further integrates a centroid-guided biconnectivity control
algorithm to enable proactive network connectivity awareness and constructs a mean opinion score (MOS)-
driven multi-objective adaptive reward mechanism to synergistically optimize quality of experience (QoE),
network resilience, safety, and energy efficiency. Experimental results demonstrate that ASC-ARES
achieves superior convergence and stability, maintaining an MOS fluctuation rate of only 0.36% and a
biconnectivity success rate of 99.98%. Under fast gradient sign method (FGSM) , projected gradient
descent (PGD) , and strong noise interference (e =2.0) , the system exhibits exceptional topology
reconstruction and state recovery capabilities, with an average performance restoration rate exceeding 80%
after interference removal. Ablation studies confirm that the topology control module improves service
quality by 59% , while the repulsion mechanism reduces collision risk by 85%. These findings establish
ASC-ARES as an effective paradigm for achieving integrated performance-security co-optimization in
resource-constrained multi-agent systems.

Highlights:

1. ASC-ARES: A security-by-design framework that endogenously embeds topology, collision, and
energy constraints into deep reinforcement learning for multi-UAV coordination.

2. Integration of centroid-guided biconnected topology control with hybrid-action deep deterministic policy
gradient (DDPG) enables joint optimization of connectivity, safety, and energy efficiency.

3. Achieves 99.98% network biconnectivity and only 0.36 % mean opinion score (MOS) fluctuation under
dynamic operational conditions.

4. Demonstrates over 80% recovery in system performance after fast gradient sign method (FGSM) and
projected gradient descent (PGD) attacks, with ablation studies confirming an 85% reduction in collision
risk.

Key words: multi-UAV systems; deep reinforcement learning; collaborative decision-making; security by
design; topology control
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