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无人机多模态超宽谱认知仪研究

施云鹤， 张小飞， 吴启晖

（南京航空航天大学电子信息工程学院，南京  211106）

摘 要： 本文设计了一种无人机（Unmanned aerial vehicle， UAV）多模态超宽谱认知仪，通过深度融合

可见光、红外、合成孔径雷达（Synthetic aperture radar，SAR）及无线频谱等多模态传感器构建智能遥感

系统，旨在攻克传统无人机遥感的根本性瓶颈：续航时间短严重制约探测范围、有效载荷不足限制多模

态感知能力、机载算力薄弱导致实时处理延迟、通信容量有限阻碍高保真态势评估。本文设计方案针

对 续 航 挑 战 ，采 用 活 塞 发 动 机 与 锂 电 池 协 同 的 混 合 能 源 构 型 ，结 合 垂 直 起 降（Vertical take‑off and 
landing， VTOL）飞翼布局，显著提升航时效能；为应对载荷限制，开发复眼多目相机实现大视场高分辨

率成像，集成 W 波段轻小型 SAR 突破亚毫米级振动补偿技术，支撑空‑时‑频多维度协同感知；为化解实

时处理困境，基于时空配准框架与轻量化深度学习模型，构建数据层‑特征层‑语义层多层次融合机制，

将低可观测目标检测精度提升至 90% 以上；针对通信瓶颈，创新生成式编码技术结合知识图谱驱动的

态势重建，通过无参考质量评估模型量化语义保真度，实现超  400 倍压缩下的高保真三维态势生成。

该仪器在国防侦察领域成功实现复杂电磁环境中隐蔽目标实时追踪，在应急救援中完成洪涝灾害监测

与三维重建等关键任务，验证了多模态超宽谱认知在复杂场景的实用价值。
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引   言

《中华人民共和国国民经济和社会发展第十四个五年规划和  2035 年远景目标纲要》指出需打造全

球覆盖、高效运行的通信、导航、遥感空间基础设施体系［1］。国家自然资源部《关于加快测绘地理信息事

业转型升级更好支撑高质量发展的意见》指出，强化无人机（Unmanned aerial vehicle， UAV）遥感布局，

推进应急测绘保障能力“平急结合”，对于国家的生态环境监测、洪涝灾害监测和应急救援等具有重要

意义［2］。国家自然科学基金委“十四五”优先发展领域“精准探测与信息融合处理”明确要围绕复杂环境

和复杂目标信息获取与处理难题，探索多源融合探测成像、多维度稀疏信号处理、智能遥感信息处理与

目标识别等新机理、新方法，为国家应急响应系统建设及应用拓展提供技术支撑［3］。

无人机遥感（Unmanned aerial vehicle remote sensing，UAVRS）［4‑5］，即利用先进的无人驾驶飞行器、

遥感传感器、遥测遥控、通信、全球定位系统（Global positioning system，GPS）差分定位等技术，实现自

动化、智能化、专用化快速获取国土资源、自然环境、地震灾区、重要目标等空间遥感信息，完成遥感数

基金项目：国家自然科学基金（62427801）。
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据处理、建模和应用分析［6‑8］。相比卫星遥感，无人机遥感具有分辨率高［9］、机动性强、不受云覆盖限制

等优势，已成为世界各国争相研究的热点［10］，将成为未来的主要航空遥感技术之一［11‑20］。随着无人机

遥感与国防安全、国土资源、农业、林业、水利、环境保护、城市规划及灾害防治等领域的深度融合，亟需

向多模态超宽谱遥感探测方向发展。传统的无人机遥感面临着四大挑战：一是无人机续航时间受限，

探测范围小；二是无人机有效载荷受限，探测模态少；三是无人机机载算力受限，实时处理难；四是无人

机通信容量受限，实时评估难。因此，传统无人机遥感仪器亟需从单模态向多模态、从图像生成向态势

生成、从短航时向长航时、从地面计算向空地协同计算跃升，设计制造出新型科研仪器‑无人机多模态超

宽谱认知仪，以推动认知科学、人工智能理论与无人机遥感的深度融合，探索目标与环境的多模态超宽

谱特性，揭示面向目标与环境的多模态认知、多模态决策与多模态学习等作用机理，实现对目标与环境

的多特性分析认知、多语义态势生成与实时自主航迹规划，为无人机遥感探测的迭代升级提供科学

指导。

重要目标及其环境的特性表征、感知融合、计算成像是无人机遥感探测中的关键问题。本文通过

无人机多模态超宽谱认知仪的研制，针对重要目标及其环境要素的多模态超宽谱特性关联表征、多模

态多层次融合认知机理、多模态语义态势生成模型 3 个重要科学问题展开研究。低可观测目标探测问

题是一个探索性强、难度大而又具有强烈背景需求的研究领域，强杂波背景、目标复杂运动、低辐射、天

气复杂多变等会使得探测信号微弱，时频域难以区分，部分目标会呈现低可观测特性。多模态认知是

研究机器怎样模拟人类“联觉”，分析不同感知通道的联系，以实现对目标及环境进行时空频以及语义

知识等维度上的高效感知和综合理解。态势生成是指通过数据采集与分析获取实时或准实时的目标

环境状态趋势信息，利用图形化、形象化、逼真化等可视化技术，将状态趋势信息转换成人眼可观测的

态势图，以利于人机协同决策。其拟解决的关键技术问题是：轻小型高精度多模态探测载荷设计集成

技术、轻量化高精度多模态融合协同认知技术、大压缩比高保真多模态混合态势生成技术。

综上所述，面向国家空间基础设施体系建设、应急测绘保障与精准探测等重大需求，开展无人机多

模态超宽谱认知仪研制，不仅是推动无人机遥感技术从单一感知向智能认知跨越的必然趋势，也是解

决当前探测范围有限、载荷模态单一、实时处理困难等瓶颈问题的关键途径。本文通过多模态超宽谱

特性的关联表征、多层次融合认知机理探索以及语义态势生成模型构建，为重要目标及其环境的精准

感知、智能解译与高效决策提供坚实的理论支撑与先进的技术途径。

1 研究现状  

1. 1　光学与红外载荷技术研究现状　

多光谱载荷主要包含光学相机与红外相机。光学相机具有较高分辨率，可进行较清晰的成像。

最早用于无人机遥感的传感器是可见光相机，可见光相机的视角扩展已成为无人机遥感特别关注的

问题。2019 年，Fujita 等［21］提出了一种从光场相机阵列中提取、处理多视角图像的方法。2022 年，Qi
等［22］总结了多孔径光学成像系统的数学模型，以便于多目相机的设计与评估。红外热像仪是能够在

恶劣天气条件或低照度下工作的设备，适合于火灾预警、目标跟踪等。2018 年，文献［23］提出了一种

基于热红外图像的空域监测系统用于监控目标空域的小型飞行物，通过开发的热红外图像增强算法

可实时输出增强后视频序列，在低能见度情况下可对小型飞机、直升机和无人机等进行检测跟踪。

2020 年，Zhang 等［24］将卷积神经网络模型用于 VIF 算法中；2024 年，Wang 等［25］结合传统计算机视觉

中的算子方法与深度学习，通过梯度聚合残差稠密块和并行注意机制来驱动融合过程，可生成高质量

的融合图像。
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1. 2　合成孔径雷达小型化与实时处理研究现状　

合成孔径雷达（Synthetic aperture radar，SAR）是利用电磁波进行成像感知的传感器，不受云、雨、

雾、雪等天气影响，能够全天时、全天候地获取地表的高分辨图像。2013 年，Aguasca 等［26］提出了一种小

型无人机机载 SAR 平台（ARBRES），该平台具有重量轻、独立可操作的特点，工作在 X 或 C 频段，采用

的是阶跃线性调频信号。2018 年，美国喷气实验室研制了无人机上实时 SAR 处理系统，可以实现

25 MB/s 原始 L 波段的实时处理，并将数据转换为连续条带图像，且功耗不超过 8 W［27］。 2022 年，

Yocky 等［28］探讨了使用小型无人机 SAR 为 SPE 三期项目提供快速、廉价的合成孔径雷达干涉（Interfer‑
ometric synthetic aperture radar，InSAR）数据的可行性，并通过无人机实验采集的数据证明了 InSAR 高

度测量精度；文献［29］为克服单一平台的局限性以及保证集群无人机合成孔径雷达系统能够执行先进

的  SAR 任务，为集群无人机 SAR 系统提出了一种混合分辨率增强（Hybrid resolution enhancement，
HRE）框架。

1. 3　无线频谱监测与定位技术研究现状　

机载无线频谱监测接收机开始主要应用于军事领域，主要为中型、大型无人机系统提供无线电信

号搜索截获、测量分析和定位等能力，如美国诺斯罗普·格鲁曼公司研制的“战术雷达电子战系统”是一

种无人机机载无源定位系统，能在 3 s 内对地面雷达定位，圆概率误差为 50 m［30］。美国的“捕食者”、法

国的“玛尔特”“狐狸”、英国的“不死鸟”“守望者”等，都可装载机载侦察设备，快速有效地获取战场信

息。中国无人机系统如“翼龙”无人机、“W‑50”暗剑遥控无人机等都可携带各种侦察、电子对抗设备等，

以执行监视、侦查等任务。近年来，无人机无线频谱监测平台开始在民用领域得到快速发展，相比陆基

监测平台具有受杂波影响小、多径少、移动性强等优势，同时能够克服卫星平台定位粒度粗、定位不够

精准的局限，可有效提升辐射源定位的效率和成功率。根据观测量如强度、时间、方向等的不同，目标

定位方法可分为波达方向（Direction of arrival， DOA）、到达时间（Time of arrival， TOA）、到达时间差

（Time difference of arrival， TDOA）以及基于接收信号强度（Received signal strength‑based localization， 
RSS）的定位。文献［31］提出了一种不需要任何矩阵运算的迭代方法，能够实现利用多传感器的 DOA
估计结果对三维空间中的目标进行定位。与以上传统定位不同，直接定位（Direct position determina‑
tion，DPD）技术［32］通过利用信号数据域信息直接完成目标位置估计，避免两步定位方法中两步分离造

成的信息损失，具有更高的定位精度。

1. 4　多模态融合技术发展现状　

无人机遥感是近年来快速发展的技术之一，当前主要集中可见光、红外、SAR 雷达及无线频谱监测

等遥感传感器单模态或跨模态设计，尚缺少多模态传感器无人机载集成设计研究，亟需从单模态传感

器向多模态传感器设计跃升。

1. 4. 1　SAR 与可见光图像融合的研究　

SAR 和可见光图像有着天然的互补关系，两者融合可以充分发挥各自的优势，既可以保留图像的

光谱信息，又可以不受时间和天气的影响，更全面、更直观地反映地物属性，为后续图像分析以及信息

提取提供支持。现如今，如何高效地将 SAR 和光学图像进行精准融合，从而获得一幅更全面的融合图

像成为融合领域中的研究热点［33］。传统方法主要有基于多尺度变换、子空间和稀疏表示等方法，其中

基于多尺度变换的常用方法有基于小波变换（Wavelet transform，WT）、金字塔变换（Pyramid）、非下采

样剪切波变换（Non‑subsampled shearlet transform，NSST）、非下采样轮廓波变换（Non‑subsampled con‑
tourlet transform，NSCT）、主 成 分 分 析（Principal component analysis，PCA）、强 度‑色 调‑饱 和 度

（Intensity‑hue‑saturation，IHS）以及非负矩阵分解（Non‑negative matrix factorization，NMF）等。Zhang
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等［34］将拉普拉斯金字塔与稀疏表示进行组合。Yehia 等［35］将小波变换和 IHS 变换组合，能够将 SAR 数

据注入可见光图像。Fu 等［36］为了解决融合图像中存在严重的光谱和空间失真的问题，提出一种耦合增

益注入法和引导滤波器的可见光和 SAR 图像融合方法，增强了图像的边缘细节。近年来，深度学习在

计算机视觉领域表现突出，并应用于图像融合领域。2020 年，Li 等［37］首次采用双线性池化层的融合网

络对光学和 SAR 图像提取的特征进行融合。Ye 等［38］提出一种结构与优化分离的双流融合网络（Struc‑
ture‑ and optimization‑separated two‑stream fusion network，SOSTF）新型融合框架，该算法能够有效地

融合 SAR 和可见光图像的互补特征。美国 NASA 兰利研究中心［39］构建了一套光学‑雷达融合的飞行

器探测与跟踪系统与算法，用于实现空中碰撞回避的安全操作。

1. 4. 2　多光谱融合技术进展　

传统可见光图像是指包含红‑绿‑蓝三通道的光学图像，具有高分辨率、低成本的优势。然而，可见

光图像在暗光或黑夜、环境隐蔽性强的探测场景中感知性能会大打折扣。因此，产生了多光谱图像融

合处理技术，借助可见光与红外等图像多谱段融合，完成高精度、智能化的环境与目标感知。2021 年，

中国科学院长春光学精密机械与物理研究所［40］提出了一种基于红外与可见图像融合对无人机等低空

低速小目标的远程探测算法，该算法融合后的图像细节和目标都有增强，在单传感器视觉效果较差时

仍有较好的检测精度。2022 年，文献［41］针对红外‑可见光不同成像机理和异构探测器空间分辨率不

匹配导致的低质量融合成像问题，提出一种基于深度学习的红外‑可见跨模态颜色融合网络，将融合任

务表述为保持红外‑可见光图像的结构和强度比问题。文献［42］提出了一种基于稀疏先验联合显著性

检测和潜在低秩表示的四阶微分方程的红外‑可见图像融合方法，该显著性算法具有较高的检测精度和

良好的背景抑制能力，其信息熵和信噪比都有显著增加。当前无人机遥感融合算法研究主要集中在光

学图像与雷达，光学图像与红外等双模态间融合处理，尚缺可见光、红外、雷达和无线频谱等多模态的

融合处理研究。为提高对低可观测目标及其环境的检测、识别、跟踪和行为推理性能，亟需从跨模态融

合向多模态认知跃升，开展多模态多层级融合认知处理前沿研究。

1. 4. 3　生成模型的研究现状　

图像视频压缩分为传统方法和基于深度学习的方法。传统方法基于数学变换、量化和编码的原理

减少不重要信息。基于深度学习的方法主要基于神经网络的建模和优化能力，重建高质量的图像视

频［43］，在解码端生成模型重建图像。对于视频任务，深度学习方法则通过引入视频生成模型或逐帧压

缩的方式来实现［44］。文献［45］使用跨模态语言模型从图片中生成文本描述，最后重建出图像。文献

［46］在语义保真上进行跨模态图像压缩，在编码端提取文本描述并压缩传输，解码端使图像生成模型

ControlNet生成图片。文献［47］提出三级跨模态图像重建框架，以文本描述、结构草图与隐空间特征三

者为传输内容，先从文本中解码出语义保真的图片，结合结构草图生成结构一致的图片和隐空间特征

生成信号保真的图片并输出。文献［48］提出的视频生成框架 CustomVideo 支持以文本和语义分割图为

输入，基于目标注意力控制策略生成质量较高的视频。Song 等［49］在 2018 年较早提出了用于跨模态遥

感图像生成的端对端卷积神经网络模型。Ma 等［50］较早地提出了一种基于生成对抗网络（Generative 
adversarial network，GAN）的红外与可见光图像生成方法。Xiao 等［51］通过对跨模态图像特征潜在空间

的探索，提出了基于 GAN 的图像融合生成算法。2021 年，Mildenhall等［52］提出神经辐射场（Neural radi‑
ance field，NeRF）的图像渲染生成方法。同年，Ho 等［53］提出了去噪扩散概率模型（Denoising diffusion 
probabilistic models，DDPM）。2021 年，Nichol 等［54］提出了基于 DDPM 的文本到图像跨模态生成模型

GLIDE（Guided language to image diffusion for generation and editing）。 2022 年，Ramesh 等［55］提出的

DALL‑E2 将多模态生成过程拆分为从文本到 CLIP 图像隐向量和从 CLIP 图像隐向量到图像这两个过

程，使用两个 DDPM 分别训练，取得了比 GLIDE 更加精细而高质量的生成结果。2023 年，Blattmann 
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等［56］提出了基于扩散模型的典型框架 AYL。最早的无参考图像/视频质量评估算法（Blind image/vid‑
eo quality assessment， BIQA/BVQA）是基于对少量图像或帧级特征的测量，设计用于分析和量化单个

失真类型。这些已经基本被通用 BIQA/BVQA 模型所取代。文献［57］实现了一个类似的集成模型，该

模型使用组合用户生成内容（User generated content， UGC）超集上的监督特征选择程序融合了从几个

性能最好的 BVQA 模型中选择的特征。Kang 等［58］提出了一个利用卷积神经网络准确预测图像感知质

量的通用 BIQA 框架。PaQ‑2‑PiQ［59］是一系列深度质量预测模型，包括 P2P 基线模型、P2P RoI 模型和

P2P 反馈模型，其中预训练的 ResNet‑18 作为骨干，RoIPool层聚合图片和补丁质量信息。将 Transform ‑
ers 应用于 VQA 问题的第 1 项工作是 StarVQA［60］，它由预处理、L 编码块和矢量化回归损失模块组成。

You 等［61］提出了一种感知分层网络来预测帧质量评级和特征向量的分布，以及一种长短期卷积变换器

（Long short‑term convolutional transformer，LSCT）架构来融合剪辑特征并预测整体视频质量。

无人机多模态超宽谱认知仪技术对比如表 1 所示。当前无人机遥感态势生成研究主要集中在图像

视频压缩、生成与质量评估，多模态、语义化研究还比较少。受限于无人机遥感通信容量的限制，亟需

从图像视频重建生成向多模态态势生成跃升，开展可见光、红外、激光雷达、SAR 雷达、无线频谱等多模

态数据压缩、态势生成、质量评估一体化前沿研究与相关软件开发。

2 无人机多模态超宽谱认知仪系统架构  

认知仪研制内容主要包括无人机多模态超宽谱认知仪平台、低功耗轻重量小体积多模态载荷模

块、多模态多层次融合认知机载计算模块以及多模态态势生成地面站 4 个方面，如图 1 所示。

无人机多模态超宽谱认知仪软件系统由机载软件子系统和地面站软件子系统组成。机载软件包

含各模态探测载荷、控制器、通信设备、机载计算中心等不同的操作系统（国产华为 Atlas 200I DK 计算

模块上的 openEuler 系统、GIGABYTE QBPi‑1115G4MS 计算模块上搭载的 Windows 系统、英伟达 Jet‑
son NX 上搭载的 Ubuntu 系统）、分布式异步消息中间件 Mqtt、数据库中间件 JDBC、感知数据处理与存

储、多模态融合处理与存储、多模态数据压缩处理与存储、航迹控制处理等。地面站软件子系统由地面

服务端软件及地面显控软件组成。地面服务端软件包含地面大数据量的多模态融合认知计算模块、组

网通信协调模块、地面多模态数据存储管理模块，地面显控软件包含地面多模态传感器一体化指控调

度模块、无人机系统任务规划与调度模块、系统状态管理模块和综合态势呈现模块。

表  1　无人机多模态超宽谱认知仪技术现状对比分析

Table 1　Comparative analysis of the state of the art in UAV multi‑modal ultra‑wide spectrum cognitive sensors

技术方向

光学/
红外载荷

SAR 小型化

频谱监测

多模态融合

态势生成

代表性进展

•复眼相机阵列（2022）
•红外‑可见光 CNN 融合（2020）
•轻量化  X/C 波段 SAR（2013）
•实时  L 波段处理（2018）
•DPD 直接定位（2019）
•多通道测向系统（2023）
•SAR‑光学稀疏融合（2022）
•红外‑可见光  GAN 生成（2021）

•神经辐射场（NeRF,2021）
•扩散模型生成（DALL‑E2, 2022）

技术瓶颈

•夜间性能差

•异构分辨率配准误差大

•W 波段功放不成熟

•振动补偿精度不足（>1 mm）

•同频信号分离难

•动态目标定位延迟高

• 仅限于双模态

• 实时性差（>500 ms）

•未适配无人机通信约束

•缺乏语义保真评估

本文突破方向

•复眼多目相机+红外联合标定

•端到端参数生成网络优化图像

•W 波段固态功率合成

•亚毫米级振动补偿技术

•超分辨率同频多信号测向

•移动侦测数据动态融合定位

•四模态时空配准

•轻量化多层次融合架构

•生成式编码（400 倍压缩）

•知识图谱驱动重建+无参考质

量评估
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无人机多模态超宽谱认知软件系统基于 B/S 架构设计，用服务端部署的方式通过划分功能来满足

用户的需求，如图 2 所示。软件架构主要分为 4 层。

数据层：负责数据汇聚、存储和对上层的调用接口，包括多模态感知数据、机载数据缓存、轻量级数

据中台、清洗后数据和融合后数据等，将各个传感器的数据进行整合和处理，提高数据质量和一致性，

以便于进行更全面、准确的分析计算。在数据汇集的过程中，对多模态感知数据进行预处理，以提高数

据的质量和可用性。多模态数据以基础关系型数据库或数据文件的形式分类分级存储，由数据层提供

访问接口供多模态融合算法提取计算。数据层中间件包括数据库中间件 JDBC 用于接收机载多模态融

合处理数据存储到地面数据库、地面端异步消息中间件用于整套软件系统的消息数据异步传输。

算法层：负责软件系统算法的调用接口管理、运行资源管理分配，包括机载多模态认知算法、多模

态融合增强认知算法、无人机自主规划算法、智能通信频点决策算法、机载认知网络切换算法、地面多

模态认知算法、地面多模态融合增强算法、伪装目标探测识别算法、多目标稳定跟踪算法、同频目标定

位跟踪算法、多模态数据清洗算法以及综合态势认知生成算法等，提供对上层的算法接入和调度接口。

具备扩展能力，能够接入符合接口要求的多级多类认知计算算法。

图 1　无人机多模态超宽谱认知仪

Fig.1　UAV‑borne multi‑modal ultra‑wide spectrum cognitive instrument
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控制层：包括对多模态传感器的指令控制、无人机作业任务的控制调度、对系统空地通信信道切换

的控制、多模态融合认知算法的计算调度等，根据任务需求和环境条件，动态调度各种认知算法，并根

据计算资源的可用性合理分配计算任务，确保计算任务的高效执行。软件控制层中间件包括分布式任

务中间件，用于各模态探测子系统的协同任务调度，以及任务注册中心，用于管理各模态探测子系统的

任务管理以及对应用层提供任务调度接口服务。

应用层：负责系统多模态传感器实时显控、通信网络管理、用户的指控信令生成、大数据量的多模

态融合认知计算、多模态数据管理应用、电磁环境认知、5G 网络状态监测、综合态势呈现、态势质量评

估、复杂环境和复杂目标信息获取与处理、多维度稀疏信号处理以及多源融合探测成像等一系列应用。

将各种传感器数据和分析结果以直观的方式实时展示出来，帮助全面了解无人机系统的运行状态和周

围环境，通过将多种感知数据进行融合增强，提高对目标的检测、识别和跟踪能力。

3 关键技术研究进展  

3. 1　长航时混合能源无人机平台技术　

围绕应急救援、巡检任务、军事侦察等的迫切需求，本文研究可在复杂气象和地形条件下起降、长

时间续航飞行的垂直起降无人机，突破长航时混合能源无人机总体构型、高效布局设计、新能源动力匹

配与驱动技术等关键技术研究，形成长航时无人机总体技术。

3. 1. 1　垂直起降无人机总体构型设计　

垂直起降（Vertical take‑off and landing，VTOL）技术的应用显著提升了长航时无人机在复杂环境

下的作业能力，使其摆脱了对传统起降场地的依赖。然而，这种技术改进也带来了新的设计挑战，特别

是在采用混合能源系统的情况下，系统复杂度显著增加。VTOL 模块不仅影响无人机的巡航性能，还

对飞行速度、续航时间等关键指标提出了更高要求，这使得垂直起降固定翼无人机的总体设计面临严

峻挑战。混合能源无人机的设计过程存在明显的能量‑重量耦合效应，这要求从能量平衡、重量平衡和

功重匹配等多个维度进行综合考量。与传统能源无人机相比，混合动力系统的重量会随飞行条件动态

图 2　无人机多模态超宽谱认知软件系统

Fig.2　Multi‑modal ultra‑wide spectrum cognitive software system for UAVs
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变化，因此需要建立精确的系统模型。首先需要构建包含燃油推进系统和锂电池系统在内的混合能源

重量模型，并基于能量守恒原理建立系统内部的功率传递模型。通过对不同飞行状态下动力需求的差

异性分析，可以建立完整的飞行剖面功率模型，实现混电系统内部功率的精确分配。

在重量/能量耦合分析的基础上，研究建立了包含结构、动力、燃油、载荷和机载设备等在内的全系统

重量预测模型和功率预测模型，通过各分系统重量模型的协同优化，在满足功率平衡和重量平衡约束条

件的前提下，最终实现了混合能源无人机总体参数的优化设计。结合总体参数和飞行性能需求对超长航

时无人机的外形参数，如展弦比、翼展、机身容

积等进行分析，并结合燃油需求和混合能源动

力需求进行初步总体布置，对比多种布局方案，

完成混合能源无人机总体构型方案。此无人机

平台拟采用大展弦比机翼、翼身融合的飞翼布

局形式，并添加翼尖小翼。机身头部为任务载

荷舱，机身中部为燃油及动力装置舱，机身尾部

螺旋桨为主要推进装置，其基本构型为翼展

8 m，展弦比 22。原型机设计图见图 3。
3. 1. 2　混合能源动力系统优化　

混合能源动力系统的关键在于如何优化

能量管理和动力匹配，首先保证动力系统匹配优化，可巡航速度要大于失速速度，保证飞机巡航时的安

全性。其次，还需要确定功率要求，对于往复活塞式航空发动机，起飞阶段的功率是恒定的，在忽略滚

动阻力的情况下，采用平均推力和阻力进行计算，则起飞距离 dtk可以表示为［62］

d tk =
W gV 2

LO

2g ( T avg - D avg )
（1）

式中：Wg为飞机重量；g 为重力加速度；爬升速度 VLO 应不小于 1.1 倍的失速速度；平均推力 Tavg和阻力  
Davg应该等于 0.7 倍 VLO情况下的推力和阻力。对于混合动力无人机的参数匹配中，待优化匹配的参数

有：发动机的最大功率 PICE，max，电机最大功率 PEM，max，所需燃油质量 mfuel，飞行时间 tf，功率分配系数 σp。

优化目标函数为

minJ1 = m fuel （2）
minJ2 = − t f （3）

根据电池荷电状态（State of charge，SOC）与电池关系［63］即可得到系统预测模型为

SȮC = - I
Q b

= U b - U 2
b - 4R b P b

2R b
（4）

式中：Qb为电池的额定容量，电池开路电压 Ub和电池内阻 Rb为电池 SOC 的函数，动力电池输出功率 Pb 

可视为发动机‑发电机组输出功率与系统需求功率之差，也即

P b = ω e · T gen − P need （5）
在系统状态转移方程中，系统状态量 x为电池 SOC，系统控制量 u为发动机转速 ωe和发电机转矩

Tgen，系统干扰量 v为需求功率 Pneed，系统输出量 y为电池 SOC 和发动机燃油消耗率 mf。非线性预测模

型的离散形式可以描述为

x ( k + 1 )= f ( x ( k )，u ( k )，v ( k ) )   y ( k + 1 )= g ( x ( k )，u ( k )，v ( k ) ) （6）
式中：x = ［SOC］， u = ［ωe Tgen］

T， v = ［Pneed］
T， y = ［SOCmf］

T，等效燃油消耗因子 Se计算公式为［64］

S e = 2 − 2 · ( 1 − 0.7z ) · z3 （7）

图 3　无人机平台外形图

Fig.3　UAV platform profile
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z =
SOC - SOCH + SOCL

2
SOCH - SOCL

（8）

式中：SOCH为电池 SOC 最大限值，SOCL为电池 SOC 的最小限值。

综合发动机油耗和 SOC 变动量限制两个因素，预测时域之内的优化目标成本函数可以表述为

J =∫
t0

th

( m f + ω s ( SOCt - SOCr )2 ) dt + ω h ( SOCth - SOCr ) （9）

式中：t0为预测时域起始时刻，th为预测时域终止时刻，SOCth为终止时刻的电池 SOC 值，SOCr为电池参

考 SOC 基准，ωs（SOCt-SOCr）
2 表示对电池 SOC 波动量的惩罚，ωs 为电池 SOC 波动量的权重，

ωs（SOCt −SOCr）表示对电池预测时域终止时刻电池 SOC 变动量的惩罚，ωh为其惩罚权重。

基于以上模型完成仿真与设计，从而实现整机飞行过程中动态能量管理，如图 4所示。以 150 kg级混合

能源动力无人机为研究对象，形成无人机混合能源和分布式推进新型高效混合动力系统总体技术方案。其

中：混合动力系统最大起飞质量不小于150 kg，载荷能力不低于35 kg，速度100 km/h，续航时间不低于10 h。

图  4　活塞发动机发电和锂电池的混合动力系统构型

Fig.4　Configuration of a hybrid power system with a piston engine‑generator and lithium batteries
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通过表 2 对比能够看出，与国内外的垂直起降无人机平台相比，本文方案无人机遥感平台通过采用

大展弦比机翼+旋翼的高效布局形式，以及混合动力系统优化匹配设计，可以有效提升平台的载荷能

力，实现多种载荷的选装，同时提升航时达到 10 h 以上。

3. 2　多模态探测载荷技术　

多模态探测载荷技术是提升无人机遥感性能的核心之一。不同类型的传感器能够从不同维度获

取目标和环境的信息，通过综合利用这些信息，可以得到更加准确和全面的遥感数据。为提高无人机

的探测能力，需设计轻量化的多模态传感器，如可见光相机、红外热像仪和 SAR 雷达等。这些载荷的集

成设计不仅要考虑重量、体积等因素，还要在电磁兼容性、互不干扰等方面进行优化，确保各类传感器

能够协同工作，实现多模态数据的高效采集和处理。

3. 2. 1　复眼多目相机技术　

目标识别跟踪任务通常需要高分辨率图像作为输入，大场景、大视野下的精准小目标检测需要

2 000 万以上的像素，而传统相机的像素数量有限，无法满足对小目标准确识别和跟踪的需求。因此使

用大视场高分辨率复眼多目相机的关键技术，为低可观测目标的检测和追踪提供了有效解决方案。

复眼多目相机技术通过配置多个相机，能够获得更广阔的视场和更高的图像分辨率。在无人

机遥感应用中，复眼相机常用于地面物体的检测、跟踪和识别等任务。其优势在于通过对不同角度

拍摄的图像进行融合，能够克服单一视角下的盲区，提供更为清晰和立体的图像。基于多个可见光

传感器的相机系统可以充分发挥复眼光学相机的大场景、高分辨率图像优势，结合红外传感器在夜

视方面的成熟优势，能够实现低成本、高分辨率、高准确性、全天候的“全场景”成像与感知。复眼计

算成像系统为了获取尽可能大的融合分辨率和视场角，一方面各子镜头的分视场之间需要尽可能

减少重叠，另一方面增加子镜头数目以获取更多的视野，最终实现复眼相机的大视场覆盖，主要包

含可见光拼接融合、复眼光学相机校准与标定、可扩展视频拼接专用处理器 3 方面的技术。

不同传感器在数据分辨率、帧率、成像内容上差异巨大，需要充分发挥多传感器的物理器件优势，

实现在异质分辨率、视场角、空间尺度上对复眼相机视场内物体的联合标定，最终实现在超大视野范

围下，结合图像的高分辨率特性和多源传感器在距离探测、运动捕捉和多光谱成像的特性。在可见光

与红外融合方面，通过融合红外和可见光传感器数据，获得对时间、空间、角度的特性高维调制，利用

联合标定设计的思路，实现多模态传感器对场景同一目标的多维度描述，突破了传统单一传感器的物

理限制，构建了合适的内参和外参模型，把所有子镜头相位点及传感器物理特性都合理利用起来，建

立统一的联合参数给予多源复眼光学相机建模。同时利用端对端的参数生成网络生成图像处理核参

数，避免了不同场景下非最优解以及重新训练的问题，可以使得各子镜头根据自己所拍摄的场景强化

图像高频和低频分量，使图像中物体轮廓清晰、细节明显，从而保证所拍摄图像的一致性和优化性，如

图 5 所示。

表 2　国内外垂直起降无人机平台性能与本文方案对比

Table 2　Performance comparison of domestic/international VTOL UAV platforms and the proposed solution

型号

起飞质量/kg
动力形式

飞行速度/(km⋅h-1)
最大载荷/kg
续航时间/h

CW‑100
110
油动

100
≤25

8

HC‑141
160
油动

108
30
10

白鹤

162
油动

120
30
5

TU‑150
140

混合动力

120
25
8

本文方案

≤150
混合动力

100
≥35
≥10
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3. 2. 2　W 波段轻小型 SAR 雷达

SAR 雷达是一种通过主动发射电磁波来探测目标的技术，具备全天候、全天时的优势。W 波段雷

达作为一种高频率的  SAR 雷达，其具有更高的分辨率和

更强的穿透能力，特别适用于地表和植被下的目标探测。

为了使其适用于无人机平台，需对雷达的重量和功耗进行

优化，确保其能够在有限的空间内发挥最大效能。当前技

术条件下，W 波段合成孔径雷达技术还面临多方面挑战。

在总体设计方面，如何在小型化高集成度要求下降低重

量、减小功耗、优化散热是一大难题；在器件方面，现阶段

W 波段固态功放等关键元器件不成熟，输出功率等核心指

标不满足探测要求；在天线设计方面，平面天线合成馈电

网络路径长损耗大，导致天线效率大幅降低。因此，需针

对以上挑战，开展 W 波段雷达一体化集成技术、W 波段固

态功率合成技术、W 波段高增益平面天线技术研究。W 波

段无人机 SAR 原理样机主要由雷达吊舱和后端设备等组

成，如图 6 所示。

3. 2. 3　移动侦测数据融合定位　

无线频谱种类多、传播复杂、变化快，给无线频谱测向带来极大挑战。同时，机载平台有限载荷

和功耗给机载参数估计、辐射源定位等算法时效性提出较高要求。项目通过研制机载多通道无线

频谱侦测模块，突破超分辨率同频多信号快速测向、移动侦测数据动态融合辐射源定位等技术难

题，实现复杂无线频谱的快速准确测向。其中，信号处理单元实物图见图 7，天线阵列概念图见图

8。同时，发挥无人机平台的灵活性，结合动态优化的路径，通过多点观测获得最优观测性能。在目

标位置和传播环境未知时，研究基于费雪信息矩阵、具身智能、强化学习等模型、数据驱动路径动态

优化方法，通过机载动态路径规划实现对目标位置的精确认知。移动侦测数据融合定位技术能够

结合多种传感器的数据，如红外、雷达、无线频谱等，进行综合分析，从而提高目标的定位精度。在

实际应用中，利用此技术可以实现对高速、移动目标的实时监测和定位，对于执行救援任务、敌情侦

察等具有重要意义。

图  5　复眼光学相机校准和图像优化

Fig.5　Camera array calibration and image optimization

图 6　雷达系统设备组成图

Fig.6　Radar system block diagram
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图  7　信号处理单元

Fig.7　Signal processing unit
图  8　天线阵列

Fig.8　Antenna array

3. 3　多模态融合认知技术　

多模态融合认知技术是无人机多模态超宽谱认知仪的核心技术之一，其目的是将不同传感器的数

据进行有效融合，提高目标识别和环境感知能力。

针对无人机计算和存储资源受限问题，设计适配多模态超宽谱数据融合处理的机载计算中心单元

以及多模态载荷计算单元的算力分配技术，提高协同计算和资源分配效率。针对低可观测目标、时敏

目标、辐射目标等多种类型目标，在可见光、红外、SAR 雷达、无线频谱等多模态观测下呈现的异构异质

性、互补性与冗余性等特点，以及受干扰与天气等条件影响，研究开发新算法提升多模态融合成像精度

与目标识别准确率。针对 SAR 图像目标微弱等情况，实现了非下采样轮廓波变换的 SAR、红外、多光

谱、频谱图像融合算法： 首先对预处理的 SAR、红外、多光谱、无线频谱图像进行多尺度多方向分解，得

到低频和带通方向图像；然后，由于低频和带通方向图像具有不同的信息特征，选择不同融合算法对其

进行融合，得到融合后的低频和带通方向图像；最后对融合后的低频和带通方向图像进行非下采样轮

廓波逆变换得到融合图像。

3. 3. 1　多模态时空配准算法　

多模态时空配准是指将不同时间、不同传感器采集的图像或数据对齐，以便进行后续的分析和处

理。由于 SAR 图像［65］、红外图像、多光谱图像以及无线频谱图像来自不同的传感器设备且时间‑空间呈

现不一致性，需要对多模态图像进行交叉映射，即多模态图像配准。本研究提出基于特征的配准方法，

所提取的特征应该是高度清晰、稳定且可在图像之间重复的，即图像中的点、轮廓、边缘或区域特征；由

于多模态图像强度和纹理的差异较大，所提取特征通常具有低重复性，这将明显降低匹配性能。因此，

本研究拟构建基于局部不变特征的多模态图像配准模型，提取能克服非线性强度差异的特征描述符定

向梯度通道特征，实现多模态图像配准，其中局部不变特征［66］主要指的是从可见光、红外、SAR 等异构

模态图像中提取的、能够抵抗成像机理与条件差异的稳健特征点及其描述符。由于不同传感器的成像

原理不同，导致同一场景在不同模态图像中呈现出截然不同的辐射特性、几何形态与噪声结构，使得直

接进行像素匹配或使用传统特征极易失效。因此，构建基于局部不变特征的多模态图像配准模型的核

心在于提取如“定向梯度通道特征”这类描述符，该特征对非线性强度变化保持稳定，不依赖于跨模态

间差异巨大的绝对灰度值，同时对尺度、旋转等几何微变具有一定鲁棒性，并立足于局部邻域信息以应

对局部形变。通过检测并匹配这些跨越模态仍能保持可重复性的关键点，算法能够建立不同模态图像

间可靠的特征对应关系，从而解算出将它们对齐到统一时空坐标系所需的变换参数，为后续的多层次

融合认知与态势生成奠定基础。多模态时空对齐原理如图 9 所示。

图 10 为本文方案在角度误差为 0.5°时的辐射源位置仿真估计散点图。由图 10 可以看出，本方案可

实现多干扰源被动定位，且对多个干扰源同时定位时无需额外的步骤去除模糊解。

以上方案进行了初步融合实验，辐射源目标为空中无人机，释放图传信号。实验中，给定相机的观
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察位置，能够在视野范围内观察到真实场景角度大小。随着焦距倍数增长，监控摄像头空间分辨率不

断提升，同时视场角逐渐减小。当监控 4 倍焦距时，空间分辨率与多光谱相机相当，此时球机水平视场

角为 15.6°，监控 1 倍焦距时，水平视场角度为 57.6°。图 11（a）为输入图像；图 11（b）的鸟类和直升机区域

显示出更高的显著度，这表明其他空中物体严重干扰了无人机小目标定位的性能；图 11（c）中无人机区

域的特征显著性较高，而背景的显著性较低，这证明本文融合方法能更好地捕捉无人机目标在这些特

定区域的特征。利用天线作为补充信息，将焦点限制在特定区域，可以过滤掉无关的小目标干扰，从而

提高无人机定位的精确度和效率。

图 10　基于多测向信息聚类定位散点图

Fig.10　Localization scatter plot based on multi‑DOA 
information clustering

图 11　多模态融合图

Fig.11　Multi‑modal fusion diagram

3. 3. 2　多层次融合架构　

多层次融合架构是指在数据层、特征层和语义层等多个层次上进行融合，以实现对多模态数据的深

度分析。数据层融合主要关注传感器数据的匹配与对齐，特征层融合则提取数据中的关键特征进行融

合，语义层融合则侧重于对目标和环境进行高层次的语义理解。这一架构能够有效提升多模态数据融合

图 9　多模态时空对齐

Fig.9　Multi‑modal spatio‑temporal alignment
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的精度和稳定性。数据层融合需要将多模态数据映射到统一的信息空间，但由于杂波、干扰、噪声等破坏

了数据的真实性，给后续的特征级融合和决策级融合引入误差；特征层融合先对多模态数据分别提取特

征再进行融合，越过原始异构数据对齐，对传感器对准没有像素级要求，但存在信息损失与误差传播；语

义层融合把多模态数据的语义信息进行融合处理，存在语义不一致的融合难题。多模态融合旨在将多模

态信息整合成稳定的多模态表征，以获得全面特征，提升模型鲁棒性，并且保证模型在某些模态缺失时仍

能有效工作。按融合层次，多模态融合可分为数据、特征、语义、混合等类别，分别对原始数据、抽象特征、

决策语义进行融合或混叠融合。面向多模态多层次融合，无人机多模态超宽频认知仪的机载各模态计算

单元与机载多模态计算中心的高效协同亦是仪器研制中必须解决的关键科学难题。

3. 3. 3　轻量化深度学习模型设计　

随着深度学习在遥感领域的应用，如何在无人机平台的有限计算资源下实现高效的深度学习模型

成为了一个关键问题。为此，研究者们提出了轻量化深度学习模型设计方法，通过剪枝、量化等技术，

减少模型的计算量和存储需求，从而保证实时性和高效性。

由于可见光、红外、SAR 和无线频谱监测是不同传感器或技术，它们各自具有独特的优势和劣势。

可见光图像具有丰富的色彩和纹理信息，在日常场景和自然光照条件下表现良好。然而，可见光图像

受光照和环境因素的影响较大，限制了其在夜间和恶劣天气条件下的应用。相比之下，红外图像对热

源和低照度环境中的目标具有较强的检测能力，能够在低光、夜间以及复杂天气条件下发挥更好的性

能。SAR 图像具有穿透能力，可以穿透障碍物进行观测，但其分辨率较低且数据处理复杂。无线频谱

则通过无线信号的传播和反射进行非接触式检测，具有高穿透能力，但受到信号干扰的影响。无线频

谱作为非成像感知模态，通过接收和分析目标的电磁辐射信号实现探测、定位与识别，虽在数据形态上

与可见光、红外、SAR 等成像模态差异显著，但其具备全天候全天时工作、对电磁辐射目标准确响应，以

及对植被和地形穿透性较好等独特优势，使其在低可观测目标探测、复杂电磁环境感知中具有不可替

代的互补价值。融合的可行性首先基于信息互补性：光学影像提供高分辨空间纹理但受限于光照天

气，SAR 可实现穿透成像但对弱散射目标敏感，而无线频谱专长于探测无视觉特征的电磁辐射目标，如

通信设备与干扰源，各模态在探测机制与环境适应性上形成天然互补；其次，无人机平台通过“同机同

时同视场”的多模态载荷一体化集成设计，为实现时空同步的数据采集与后续对齐提供了物理基础；此

外，融合可在多层次展开，不仅包括将无线频谱定位结果与光学图像进行坐标对齐的数据层融合，更涉

及特征层与决策层的深度融合，例如提取信号的调制类型、到达方向等特征并与图像 CNN 特征联合输

入多模态检测网络，或通过知识图谱关联目标的电磁属性与视觉外观进行综合推理。具体技术路径

上，可以通过轻小型高精度无线频谱监测接收机实现多通道超分辨率测向， 系统框图如图 12 所示，为

融合提供高精度输入。

对于该多通道机载接收机，假设监测通道数为 32，模拟中频信号采样率为 102.4 MHz，而音频解调

所需的最大采样率为 3.2 MHz，则数字下变频器多级抽取模块第 1 级抽取可使用级联积分梳状滤波器

组进行 32 倍抽取，将其采样率降低为 3.2 MHz。系统时钟为 102.4 MHz，设 2 倍抽取有限脉冲响应半带

滤波器组包括 12 个 2 倍抽取有限脉冲响应半带滤波器，则可完成 32 个通道复用。天线阵列方面采用均

匀圆阵，且阵元均为各向同性阵元，主要用于对无线频谱信号的接收，由测向天线阵和测向开关组成。

算法方面，相比常规波束形成（Conventional beamforming， CBF）方法，多信号分类（Multiple signal clas‑
sification， MUSIC）方法可获得超分辨率空间方向信息。图 13 为对 3 个同频信号的测向结果，可以发现

MUSIC 方法能进行有效测向，且测向精度优于 2°，可实现对复杂混叠多信号的超分辨率测向，结合基于

可见光、红外、SAR、无线频谱的多模态融合感知方法预计可以达到最低检测精度不低于 90%、漏检率

不超过 10%。因此尽管无线频谱数据具有异构性，但通过时空配准、特征融合与决策协同，可有效融入
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多模态认知框架。文献［67］给出了一个成熟的无

线频谱多模态感知方案，证明了无线频谱多模态融

合的可行性。因此，联合可见光、红外图像、SAR 雷

达和无线频谱，通过这 4 种模态信息融合，可以提高

目标检测的鲁棒性，使系统更适用于各种环境和光

照条件。基于以上问题，可以设计一种可见光、红

外、SAR 和无线频谱的深度学习融合网络，其主要

可由特征提取骨干网络、融合单元和目标检测头 3
部分组成。（1）特征骨干网络：由多个层级的池化层

和卷积层所组成，从而逐渐减小输入图像的空间维

度，并增加通道的数量。为了更好地提取主模态和

辅模态的特征，分别采用 2 个独立的特征提取骨干

网络，以获取两种模态中的有效信息。（2）融合单元：将主模态和辅模态的特征进行融合，从而更好地发

挥其优势。其主要有特征加权融合和特征最大两种不同的形式，加权求和具有灵活性和综合性的优

势，但需要考虑权重设定的敏感性。最大值简单明确，直观性强，但可能没有办法充分利用所有的数

据。为了更好地融合其信息，本文将两个混合特征进行拼接。（3）目标检测头：可以将语义特征征与目

标的类别和位置进行关联，从而实现对目标的检测和定位。利用目标检测头，即可以对之前得到的混

合特征进行处理，从而得到最后的目标检测结果。目标检测网络设计图见图 14。
基于上述的可见光+红外+SAR+无线频谱融合框架，可对当前的通用目标检测网络进行改造以

实现可见光与红外数据的数据融合与目标检测。随着目标检测的发展，它可以整合最先进的技术，从

而实现轮次迭代。在 YOLOv3 达到峰值性能后，YOLO 扩展板开始关注无锚点检测器、高级标签分配

策略和端到端检测器，这是近年来的主要进展［68］。升级后，在 COCO 数据集上，与 YOLOv3 相比，它表

现出了显著的性能，而单次多框检测器结合了几个不同分辨率的特征图，从而通过多尺度训练提高了

模型的性能。该检测网络对于不同大小的物体有很好的检测效果，且只涉及单个网络，使得模型易于

图 13　超分辨率空间谱估计

Fig.13　Super‑resolution spatial spectrum estimation

图 12　机载多通道无线频谱监测接收机系统框图

Fig.12　System block diagram of the airborne multi‑channel wireless spectrum monitoring receiver
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训练。

目标检测算法通常使用平均精度均值（mean Average precision， mAP）来进行性能准确性的评价。

mAP 表示在数据集中检测到的所有目标的平均精度。计算 mAP，首先需要计算精确率（Precision）和召

回率（Recall），计算公式如下［69］

Precision = TP
TP + FP （10）

Recall = TP
TP + FN （11）

式中：TP（True positive）代表的是被模型正确检测出的正样本数量，FP（False positive）代表的是被模型

错误地检测为目标的负样本数量，FN（False negative）代表的是真实存在但未被模型检测出的目标数

量。在目标检测网络中，一般认为当预测框和真实框的交并比（Intersection over union，IoU）>50% 时，

该预测框为正样本。针对目标检测问题，考虑无人机载 SAR 全天时全天候工作的优势，以 SAR 模态为

主，在特征层和语义层融合 SAR 图像以及可见光、红外图像，实现可见光、红外辅助融合的 SAR 动目标

检测功能；针对目标识别问题，利用可见光模态高分辨成像的特点，以可见光模态为主，在特征层、语义

层构建可见光、红外融合模型，实现对图像目标的精准识别；针对辐射目标定位问题，利用目标的辐射

特性，以无线频谱感知模态为主，设计无线频谱与可见光在语义层融合的定位算法，实现对辐射目标定

位性能的提升；针对目标跟踪问题，利用可见光成像效率高以及红外模态夜间成像优势，在数据层、特

征层、语义层融合可见光与红外图像，实现对图像目标的有效跟踪。传统的单模态检测方法在理想条

件下精度通常在 80% 左右［70］。近年来，面向无人机的轻量化检测模型将单模态精度提升至接近 90%
的水平［71］。而通过引入多模态融合，特别是借鉴基于 Transformer 的先进融合架构［72］，可在复杂场景下

实现更鲁棒、更精准的感知。传统基于可见光、红外、SAR、无线频谱的单模态方法检测精度不低于

80%、漏检率不超过 20%，通过多模态融合实现多场景、多目标、全天候的检测性能，最低检测精度不低

于 90%、漏检率不超过 10%［73］。

与同类型轻量化深度学习方法相比，本文提出的研究框架核心优势在于其并非单一的模型压缩或

加速，而是一个面向无人机平台资源严格受限条件（载荷、算力、续航、通信）进行全方位软硬件协同设

计与多层次优化的“系统级”轻量化框架，构建了覆盖“近传感器计算‑单模态计算‑多模态融合计算”三

层异构计算架构，并实现了机载多模态数据的异步协同计算与动态资源调度，这使得可见光、红外、

SAR 与无线频谱等处理负载迥异的模态能在统一管理下高效协同，避免了简单堆砌单模态轻量化模型

图 14　基于可见光、红外、SAR、无线频谱的目标检测网络

Fig.14　Target detection network based on visible light, infrared, SAR, and wireless spectrum
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带来的资源冲突与效率瓶颈。该框架还将轻量化从算法层延伸至感知‑传输‑计算闭环，创新性地提出

了基于知识图谱与生成式模型的语义级态势压缩与重建方法，在通信带宽受限条件下，实现了比传统

编码方法高压缩比的同时保持高层语义保真，解决了“轻量传输”与“丰富信息”之间的矛盾。

因此，本框架的优势在于其系统性、协同性与任务适应性，能够在确保无人机长航时、大范围作业

的物理约束下，实现多模态融合认知从数据到决策的全流程高效运行，而不仅仅是单个深度学习模型

的轻量化。以 SAR 图像为例，与国内外的无人机载单模态 SAR 图像动目标检测与跟踪性能相比，本算

法中基于多模态融合的 SAR 图像动目标检测与跟踪模块，可以实现更低的目标最小可检测速度和同时

跟踪更多目标的功能，有效提升了无人机载 SAR 图像的目标检测与跟踪性能，性能对比如表 3 所示。

3. 4　多模态态势生成技术　

多模态态势生成技术旨在通过对多模态遥感数据的处理和融合，实时生成目标和环境的态势图，

帮助决策人员进行实时决策。在无人机平台上实现超低码率且高质量的多模态态势生成模型具有深

远的意义。首先，它极大地提高了无线传输效率，使得在带宽受限的情况下也能传输 8 000 像素高分辨

率图像，这对于扩大无人机的作业范围和提高任务执行的灵活性至关重要。其次，通过保证压缩重建

后图像的语义保真度，确保了信息的准确性，这对于无人机执行侦察、监视等高精度任务非常关键，能

够确保目标检测与追踪的信息准确无误。可以利用多模态态势生成模型范式，结合高效的多模态视频

图像编解码方法，建立起具有端到端运行多模态态势生成算法能力的边缘计算平台，以低功耗、低延

时、高精度的性能构建多模态态势生成终端。算法上，多模态图像成像系统可以分成编码端和解码端

两部分，算法框架如图 15 所示。其中，语义提取［74］旨在从文本中捕捉语言符号背后的深层语义表示，其

核心是通过计算模型将离散符号映射为连续向量空间中的稠密向量。该过程通常依赖于词嵌入技术，

将词汇转化为低维分布式向量，并借助注意力机制动态加权不同上下文成分的贡献。近年来，预训练

语言模型（Pre‑trained language models， PLMs）如基于变换器的双向编码器表示（Bidirectional encoder 
representations from Transformer， BERT）通过大规模语料库的掩码语言建模（Masked language model‑
ing， MLM）任务，学习融合上下文信息的深层语义特征。这些模型通过多层变换器（Transformer）编码

器捕获词汇间复杂依赖关系，从而生成能够支撑下游自然语言处理任务的通用语义表示。态势生成终

端具有通信带宽紧缺、供电紧俏、物理空间狭小、可编程度低和面向人类视觉的特点。因此要求态势生

成及编解码算法复杂度不可过高，具有场景和气候普适性，重建图像质量以人眼观感为首要倾向，同时

尽可能压缩态势生成所需的信息源，以达到节省带宽的目的。

3. 4. 1　大压缩比编码算法　

在无人机遥感中，数据传输的带宽有限，尤其是在执行大范围监测任务时，大量的遥感数据会导致

通信瓶颈。大压缩比编码算法能够在保持数据质量的前提下，实现数据的高效压缩，从而减少数据传

输所需的带宽，提高通信效率。因此，可以使用“压缩特征‑信息增强视频”的生成式算法，采用生成对抗

式训练方式，从而实现具有强大生成能力的轻量级成像网络。

表  3　SAR 图像动目标检测与跟踪性能指标先进性对比

Table 3　Performance comparison of moving target detection and tracking in SAR imagery

指标名称

运动目标最小可检测速度/(m⋅s-1)
运动目标同时跟踪数

现有 SAR 雷达单模态图像目标检测

与跟踪性能

≤7
≥6

本项目中多模态融合 SAR 图像

目标检测与跟踪性能

≤5
≥8
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算法上，多模态图像成像系统可以分成编码端和解码端两部分。该算法以多模态视频 Mm为输入，

其中 M0为可见光视频，其他为雷达视频、红外视频等其他语义视频。该算法于编码端实现语义信息和

特征图像的提取和压缩，将多模态视频转入隐式的特征空间，在高度保留语义信息的同时压缩比特流

大小，以满足无人机受限的通信带宽。对可见光视频非关键帧进行特征提取时，使用类 U‑Net 网络；对

关键帧进行图像编码时，使用传统的帧内编码或图像编码算法；对其他模态视频进行语义提取时，使用

混合式提取方法。算法于解码端实现由压缩信息至完整多维图像的生成过程，在获得高保真视频画面

的同时集合多模态语义信息。首先，二进制比特流经过对应的熵解码和图像解码过程，得到关键帧图

像和非关键帧特征及语义信息；其次，特征和语义信息经过融合后得到增强后的隐式空间信息；最终，

该信息经过强大的生成式网络，生成出最终的高纬度、多语义、高保真视频。整个编解码算法以端到

端、生成‑对抗的训练方式进行基于大数据的学习，收敛后固定权重，该算法即可离线使用。

解码端是该态势生成算法的重点，其生成能力决定着该态势生成终端的成像质量及成本。解码

端可以分成稀疏运动估计、密集运动估计和生成网络 3 部分。稀疏运动估计用于生成初步光流图，以

表征当前帧与关键帧之间的大致运动关系，该步骤不涉及深度学习部分，仅以传统计算方式完成；密

集运动估计由传统计算和深度学习网络结合而成：前模块生成的帧在通道维度堆叠，经  U‑Net 处理

后，分两路经两个卷积层处理，一个用于生成多个表征变形发生处的蒙版图，另一个用于生成表征遮

挡位置的遮挡示意图；末端的生成网络首先对关键帧进行带池化的卷积处理，使其分辨率降至与运动

图相同，以便在密集运动和遮挡示意图的指引下进行变形，最终经由多层卷积后生成出高质量的原始

分辨率图像。

多模态态势生成模型基于大量数据训练形成的网络先验知识，构成了高知识水准、信息结构完备

的知识图谱。端侧定期的微调训练可以深化多模态态势生成模型对复杂情景处理的能力和智能化水

平，具有高扩展度。知识图谱利用图论原理，通过实体（节点）和实体间关系（边）的结构化表示，构建了

一个庞大且复杂的知识网络，为多模态态势生成模型提供了一个广泛的知识基础。这一结构化的知识

表示方式使得模型能够基于已有的知识进行响应生成，并通过学习知识图谱中新增的实体和关系信

图 15　多模态态势生成算法示意图

Fig.15　Schematic diagram of the multi‑modal situation awareness generation algorithm
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息，实现知识库的动态扩展和更新，进而保持模型输出的时效性和准确性。更重要的是，知识图谱的深

层语义关系和逻辑推理能力，使得模型在处理包含文本、图像、声音等多模态数据时，能够进行更准确

的语义分析和逻辑推理，显著提高了决策和预测的准确性。此外，知识图谱的跨领域知识整合能力，通

过实体识别和关系映射技术，极大地扩展了模型的适应性和应用范围，使其能够灵活应对各种领域的

特定需求。这种知识图谱原理与离线推理模型的结合，不仅促进了模型在知识理解、逻辑推理、跨领域

适应等方面的显著进步，而且为构建更为高效、智能的多模态态势生成系统奠定了坚实的基础。此多

模态态势生成模型［75］可将视频频谱等多模态信息压缩  400 倍以上，与国内外其他相关技术相比，压缩

能力有 2~4 倍的提升，具有世界技术水平。

3. 4. 2　质量评估指标体系　

态势生成的质量评估是确保生成结果符合实际应用需求的关键。针对多模态态势生成的特点，研

究者提出了一系列质量评估指标，如生成的态势图的分辨率、准确性、时效性等，确保在不同环境和任

务条件下生成的态势图具有较高的质量和可靠性。设多模态态势生成的图像为 I，经过专用于检测人

眼感兴趣区域（Region of interest，ROI）的预训练神经网络得到 ROI 区域掩膜 MaskROI，将 MaskROI 划分

为不交叠、尺寸为 Q×Q 的图像块，根据图像块中 ROI 像素点占比进一步将图像块分类为 ROI 块和非  
ROI 块。设图片中的 ROI 块数量为 Nr，非 ROI 块数量为 Nnr。对 ROI 块进行语义维度和信号维度两方

面的质量评估，对非 ROI 块仅进行信号维度方面的质量评估。整幅图像的质量分数将由所有图像块的

质 量 分 数 加 权 平 均 计 算 得 到 。 语 义 维 度 的 质 量 评 估 由 对 比 语 言‑图 像 预 训 练 模 型（Contrastive 
language‑image pre‑training，CLIP）衡量。由于缺乏可参考的高质量图像，语义维度的质量评估需要首

先建立语义信息丰富、完整、清晰的先验特征集，以供待测质量的图像块提取的特征进行对比和误差衡

量。建立语义先验特征集的过程如下：

（1）从高级机器视觉任务的深度学习数据集中整理出语义信息丰富、完整、清晰的图片数据集，设

图片数量为 M；

（2）使用 CLIP 的图像编码器对（1）中搜集的图片进行语义特征提取，设每张图片提取到的语义特

征向量维度为 P。

（3）使用多元高斯模型（Multivariate Gaussian model，MGM）对 M×P 的特征矩阵进行参数拟合，得

到均值矩阵 v1（维度为 1×P）和协方差 Σ 1（维度为 P×P）矩阵，这将作为语义保真对比的高质量先验特

征集的量化表达。

对于所有 ROI 图像块，使用 CLIP 图像编码器进行特征提取，得到 Nr×P 的待测特征矩阵，使用  
MVG 拟合得到均值矩阵 v2和协方差矩阵 Σ 2。使用 Mahalanobi距离计算［76］待测语义特征和高质量先验

语义特征的误差分数，作为待测图像 ROI 区域的语义保真分数，Mahalanobis 距离计算过程如式（12）所

示，Ssemantic数值越小，表明语义保真质量越高。

S semantic ( v1，v2，Σ 1，Σ 2 )= ( )( v1 - v2 )T ( )Σ 1 + Σ 2

2

-1

( v1 - v2 ) （12）

信号维度的质量评估由自然图像质量评估指标（Natural image quality evaluator，NIQE）衡量［77］。

自然图像质量评估指标是一个在图像视频压缩、重建、增强等领域应用广泛的无参考质量评估方法，侧

重衡量图像信号自然度上的质量水平。NIQE 以块级为单位提取自然场景统计特性相关的特征，同从

高质量自然图像集中建立的先验特征集表征进行误差计算，得到自然度分数。将所有 ROI 块和非 ROI
块组成的待测图片进行 NIQE 分数计算，得到图像信号自然度的分数，如式（13）所示，Ssignal数值越小，表

示图像信号自然度越高。

S signal = NIQE ( I ) （13）
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计算多模态态势生成图像的综合质量评估指标之前，需要将语义质量分数和信号质量分数进行逆

转换，即

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

S 'signal = 1
1 + S signal

S 'semantic = 1
1 + S semantic

（14）

多模态态势生成图像的综合质量评估指标由两方面质量分数加权平均得到，计算如下

Soverall =
S'signal × W signal + S 'semantic × W semantic

W signal + W semantic
（15）

式中 W 表示不同方面的权重系数。

在无人机遥感领域，图像质量评估的核心矛盾在于传统基于自然场景统计的无参考方法（如

NIQE）关注低层信号保真度，却与高层语义信息保真度这一核心任务需求脱节。为此，本文提出将语

义保真度与信号自然度分离评估。其理论依据在于，所采用的 CLIP 模型将图像映射至高维语义嵌入

空间，使得特征距离直接反映语义内容差异；进而通过多元高斯模型对该语义特征分布进行建模，以马

氏距离量化语义偏离程度。该方法实现了从评估“统计自然性”到评估“信息正确性”的范式转变，能够

敏锐捕捉生成过程中关键的语义失真，为面向任务的高保真无人机遥感系统提供了更直接的质量度量

依据。

与国内外现有的图像质量评估技术相比，此多模态态势生成质量评估方法能够实际应用在无人机

探测的无参考场景，针对在无人机巡航监测中对目标区域的画质要求，对多模态态势生成的图像进行

ROI区域监测，并对语义和信号两方面进行综合评估，具有领先水平。

4 结束语  

本文系统性地提出了无人机多模态超宽谱认知仪的创新设计方案和传统无人机遥感续航的一些

核心问题。方案通过设计活塞发动机与锂电池混合能源构型及垂直起降飞翼布局，显著提升了航时效

能；开发复眼多目相机与轻小型 W 波段 SAR 雷达，突破亚毫米级振动补偿技术，实现空‑时‑频多维协同

感知；构建时空配准框架下的多层次融合机制（数据层‑特征层‑语义层），结合轻量化深度学习模型，将

低可观测目标检测精度提升至 90% 以上，优于近期基于轻量化 YOLO 的检测方案及先进的 Transform ‑
er 融合模型；通过无参考质量评估模型保障语义保真度，达成 400 倍压缩下的高保真三维态势生成，在

压缩比与重建质量的权衡上达到了前沿水平［45，78］。

本研究为构建智能无人机遥感系统提出了一些设计和改进方案。然而，作为一个前瞻性的综合

设计方案，其在迈向工程化与大规模应用的道路上仍面临若干内在挑战，这亦是未来研究需要着力推

进的方向。首先，多模态高性能载荷的集成在提升感知能力的同时，也带来了系统层级的复杂性，其

电磁兼容性、热管理与长期野外作业的可靠性需通过更严苛的工程样机试验进行验证与优化。其次，

尽管所采用的轻量化深度学习模型在测试场景中取得了高精度，但其对未知极端环境与强对抗干扰

的泛化能力仍有局限，且模型决策过程缺乏可解释性，未来需融入因果推理等机制以增强鲁棒性与可

信度。进一步，系统的能量供给与异构计算资源之间尚未形成全局动态协同，开发跨平台、载荷与计

算模块的自适应资源调度策略，是平衡任务效能、续航时间与数据质量的关键。最终，当前设计主要

服务于单平台智能提升，而未来实战应用必然依赖于多机集群协作。因此，如何将本仪器的感知认知

能力扩展至分布式群体，实现多机间的知识共享与协同决策，是构建体系化、自主化遥感网络所必须

攻克的前沿课题。正视这些局限并围绕其开展持续研究，将推动该技术从卓越的原理验证走向广泛

的实际应用。
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Research on UAV Multi‑modal Ultra‑Wide Spectrum Cognitive Instrument

SHI　Yunhe， ZHANG　Xiaofei*， WU　Qihui

(College of Electronic and Information Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 211106, China)

Abstract： The unmanned aerial vehicle （UAV） multi‑modal ultra‑wide spectrum cognitive instrument 
constructs an intelligent remote sensing system by deeply integrating visible light， infrared， synthetic 
aperture radar （SAR）， and wireless spectrum sensors. It aims to overcome fundamental bottlenecks in 
traditional UAV remote sensing： Limited endurance severely constraining detection range， insufficient 
payload capacity restricting multi‑modal perception， weak onboard computing capability causing real‑time 
processing delays， and finite communication capacity hindering high‑fidelity situational assessment. To 
address endurance challenges， the design employs a hybrid energy configuration combining piston engines 
and lithium batteries with a vertical take‑off and landing （VTOL） flying‑wing layout， significantly 
enhancing operational longevity. For payload limitations， it develops a compound‑eye multi‑camera array 
for wide‑field high‑resolution imaging and integrates a W‑band miniaturized SAR radar with 
submillimeter‑level vibration compensation technology， enabling air‑time‑frequency multi‑dimensional 
collaborative perception. To resolve real‑time processing constraints， a spatiotemporal registration 
framework and lightweight deep learning model establish a multi‑level fusion mechanism 
（data‑feature‑semantic layers）， elevating detection accuracy for low‑observable targets beyond 90%. 
Targeting communication bottlenecks， innovative generative coding combined with 
knowledge‑graph‑driven situational reconstruction achieves high‑fidelity 3D situational generation under 
400‑fold compression， quantified via a no‑reference quality assessment model for semantic fidelity.
Validated in defense reconnaissance for real‑time tracking of concealed targets in complex electromagnetic 
environments and in emergency response for flood monitoring and 3D reconstruction， the instrument 
demonstrates practical value in complex scenarios. Future research should deepen cross‑modal semantic 
understanding optimization and dynamic cooperative control of UAV swarms to advance intelligent remote 
sensing toward real‑time， autonomous cognitive evolution.
Highlights:
1. A design scheme for a UAV platform integrating hybrid energy sources （piston engine + lithium 
battery） with a vertical take-off and landing flying-wing configuration is proposed， and a comparative 
analysis is conducted on the current research status of multi-modal ultra-wideband cognitive sensor 
technology for UAVs.
2. A multi-level “data-feature-semantic” fusion cognitive mechanism is established， which combines 
lightweight deep learning models with four-modal （visible light， infrared， SAR， and wireless spectrum） 
spatiotemporal registration. This is expected to significantly enhance the detection accuracy of low-

observable targets in complex scenarios.
3. A high-compression-ratio situational generation technology based on generative coding is proposed， 
which is anticipated to achieve high-fidelity 3D situational reconstruction and ensure semantic fidelity 
through a no-reference quality assessment model.
Key words： unmanned aerial vehicle; hybrid energy; multi‑modal payload integration; multi‑modal fusion; 
quality assessment
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