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To AV B RSB FEIE A F L5
B8, KN, REE
(P B ZS A R K4 i 15 B DR BE , m s 211106)

W E.: A& T —H LAM(Unmanned aerial vehicle, UAV) % 4 5 A 50 3% A 4o AL, i@ 33 IR F 8k &
LK 49k Ak 3L 42 F ik (Synthetic aperture radar, SAR) R R R & F S A B R BEMEF
R, B ARG RANE R AR AR L ACE R 42 ] RN T B A R AT R R R B AR
ARt s MBEHEBFHENAEER BREEEHARMEASZEALIHPFME, K&K HE4
LR, R A FERL N LR R RSB MA, %S & A4 % (Vertical take-off and
landing, VTOL) & 24 By, 2 3% 3% JH AL bd 2L A8 5 4 B 5T 347 41 f%ﬁ % B AMIEIRAYT & H P
BB, ERWIRBEBEDASARER T ZRBRFAMEER, L Z -0 5 fE R Bdn; AL SE
AR A A THEREERSZSNRESF IHE MAEREEFIEEELE S EREESNAH,
FEAK T L] B AT A R AR AR R 90% A b s AR AT B AT HLER , 01 37 A& R K G BB K 25 A e iR B 35 3R 3 0
AYER  AIRAAEREFEEAFTHELRALE, FAL L0 EHE THHRAELZHFESH £ R,
ZALE B AR R R R BRI P IA R B AR R B3R E R SRR T TR R E

LS52%d SR04 BiET SRR TE N EL LY T FIMMEL,

KB : RANREGRR; S RERTER; ZHRESRES AT

HESES: V279; V243; TP79 NERARER: A

Sl 8, R/, R E . TE AN 2B 58 A AL 5 [T ], B0 R AR S AL, 2026,41(1) : 28-52.
SHI Yunhe,ZHANG Xiaofei, WU Qihui. Research on UAV multi-modal ultra-wide spectrum cognitive instrument[J].
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[l

(A IR 0 [ ] RS 28 5 Ak 23 K e 55+ IO A T AR BRI A 2035 4R 5t H bR M) $8 75 4T 8 4
BRE 36 S AGE AT R A AT L RS ) A B A R A AR TR O T e £ b A B
%ﬁ”ﬂﬁﬁﬁ?}:%m R R W)HE ?ﬁf&%}\frﬂ(Unmanned aerial vehicle, UAV )& & A & ,
HEFE R 200 2 PR R RE TP 285 A R T G0 A AN BR BT Wt i I N N S R A B
B [ﬂ%E%ﬂ%%ﬁl};%“‘FEﬁ”ﬁﬁf‘ﬁk%%ﬁiﬂc“ﬁ(ﬁfﬂ?ﬂ“5%‘umﬁAKLIE"%Eﬁ%FFIQEEmHF
A A H AR AE AR U A B, PR 2 I Al BRI R 2 4R R i T A R REE S B S
H PR R S8 HLER A ik jﬂl%rg‘”ﬂfb%/LLﬁﬁfbﬁﬁ?ﬁﬁhf ﬁﬂiﬁiﬁ‘ o
Je AMLIE B (Unmanned aerial vehicle remote sensing, UAVRS)™ ™, B F] F 56 5 (49 T6 A 25 Bk R A7 28
18 AL A IR N AE 45 3B AR L 2 BRE 7 & 4t (Global positioning system , GPS) 22 70 %€ i S AR, LB H
ik B Refk L R PR R ERE R A SRR EE R U X H A AR A ) SR E L 58 i SR AL

BEE&WB : HE A AP IE4(62427801)
5 B #3:2025-11-12; 4817 H#1:2026-01-15
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b 3R BRI A BT AR B TR R R, TE A ML LA S B LA SR AR 32 5 T B
AR BB T R A MR S B B R R 1 R B A R R 2 T B TE AL
18 T By 22 4 B R BT Al ARl R ERBE R 3T R R R s i A U A TR R, TR
T 20 A5 285 8 1% T SR I 7 1) K W o A% 8 % T N BIL 3 U T i I R Bk A — 2 T A HILE AL IR (] A2 FR
PRIFE BN 5 — 02 Jo AN HUA 08 32 PR, RIS 2 A 5 = J2 JC AHLALATR T 32 BR , S isf Ak A 5 DU 2 6
BT A5 25 32 B, S AP A M o DIk, 4% 58 0 A AL 2 JERASC AR R i DA B 5 1) 22 2 L DK A5 A il 1) 25 4
P DAL P 1) AT R DA T B 1) 253 M R ] 3 5 R T e i T R AR AR T AL 2 AR A
BE RIS, UHE S A R 2 N T BE S 5 JE A HLIE A R L R, SRR A 5 BRI ) 22 45 258 9
TR 48 5 T ) F AR S PR BT B 2B SRR AS BRG ARAS  o) SEAE AL, S B H AR S B
4 22 8 P 20 M AL 22 08 SCAS 3 AR RS 2 IE B R0 3 MR, Sk TE N HIL e R I ) 32k AR T R R
E(

2 H e B PR BT R R AR AR TSR JC A HIL RE R v A G B R R SO i
To N2 B35 0 3 DRV B8 AR, 0] B2 A S B 5T 50 20 5 2508 9 % A A SC R RAT | 2 A
SZ R RGN | 2 BSOS A iU L 3 A4S F20RE 27 (R R TR T 5 o A mOULI A 4 00 1]
R — AR R L R ST R 2 SR SR BRI S U SR AR R R A AR R Akis B IR AT R
B IR S ARG 5 558, e DL 2y, 023 F AR 22 52 AR Al UL e 1 o 22 B2 R
WFSE AL (B AR ZE IR, 70 B AN [ S R0 33 F) 30k R, A S BT I e R B 85 R A I 25 A3 L % 3
DRI A AR T b B0 M R 25 B o A B A AR A e R SR AR 5 A 2 S I S S A H A
78 R I EELE ENSOR LD NEIBIA LA 72 XA B R TR o NI LR IO SR AN EDSR L2197 N A DU ]
AFE LLA T KL R DR 5 o HEADL A e 14 S B 32 AR T] TR < A/ 20 s o JRE 20 6 285 R 8 B2 3 4 i
PR A R 2 RS RS B R URIBOR R 46 L i R L 2 RS TR S8 A R

L5 b Tk T ) R 5 5 I B il 5t A 2R AR L A 0 2 R I G YR TR A R R OR L JT R TEANLZ
158 2858 5 1% DA R ASCATE A, A SR FE Bl T A AL 2 JER AR DA B — Je T 1) ) DA R 5 ) o SR B R
TR 24 T PRI 0 PRI BR80T A8 28 B — | S I A R 5 L 90 () AL 0 S B IR AR o AR S o 2 A A B 1
P B0 TR A | 22 J2 UK R 5 I OHL R 38 L R o SO 3 AR e A At Oy T2 [ A R H BRI B e
JERT R RE AR 3 R A DR SR AR 8 1 S A B SR S B HE R R IR AR

1 HFRIK

1.1 XZ25TFHETEAARARK

Z % AT TS OEF AN S L AMEIL . S FAMNLE A B PR v ST RO AR .
fe B FJE B3 T8 B AL SR 2 T LB AR AL, AT WLOE AR AL AR AR BT R R R JE AP I R R B 56 T 1Y
). 2019 4F , Fujita &2V 1 T — B G 3% I HL I 51 rb 35 B0 A B 22 W0 £ TR 10 07 v . 2022 4F, Qi
a2 s T L2 LR OGS AR R G BB R R LU T 22 H AL BT SR . 20 AN VR AR RS 1
HH RGP aAURE T TEMRE S/ T ARWE HIRRES. 20184, SCHk[ 23 42 H T —Ff
FeF LT ARG ) 25 W 2R e T W B AR 2 e /N B RAT Y, 38 0 A Y AT A AR 3 i GEL TR
AT S a4 0 S PR B, A R RE DL I T TT /N A TR L B TR TJE AL S AT R R A
2020 4F , Zhang %55 45 AU 2 N 4% B8 ] T VIF 853 th 5 2024 4F |, Wang %520 25 446 Go v H AL 3
WS T O Ik SRR S 2T TE B R i 25 % HORN IR AT T LR 9K Bl il A el R R A e
i A A
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1.2 EREZIENEKS IR LEFRRIRK

A W fL 12 B 1k (Synthetic aperture radar, SAR) J& ) F HL 0 3% A7 U AR AN AR IR A% A2 = VW
% AR BN A K | 4 KA M PR IO 2 Y 5 4 BRI % . 2013 4F, Aguasca % R T — /N
B IEAHALE SAR - & (ARBRES) ,i%F & B A Bt i 7 ol 5 4E 09 45 00, TAEAE X sl C o, 5k H
1S B BR e VE PR AR(E 5 o 2018 4F , 36 B AR L g F AR T JC AHL B SERT SAR AR R 4, W] DL SE B
25 MB/s 5t L U B (9 92 Bk &b B, I B0 s e oy o 2 4k AR, HLIh R Nl it 8 WL 20224,
Yocky 2 Tl FH/NEL G A KL SAR S SPE = #1551 H 42 fit e s | BE A 1 £ AL R B A T (Interfer
ometric synthetic aperture radar, InSAR) £ 45 B9 7T 4704 , I 38 1 Jo A HL 256 R 4 AU B IE I 7 InSAR =
JE I RS R SCRR (29 10 sE il Bt —F- 5 19 Ja BRAH: DL S AR TR EE B TC AL & AL AR T I8 RS RE 08 A7 5E i
B SAR E 5%, MR T AL SAR RE R 1 T — Fh iR 4 20 9% 8 3 (Hybrid resolution enhancement,
HRE)HEZ
1.3 Z&MEEMNEEMEARARIRK

BILZR T 2 M0 3% M 0 422 W HL T Gy 32 8 0 ] T A 40k, =2 A R B T AN R G4 E AR
AR R AT R E AL SRR, A G R R B B ks 2 A R R ORI TR RS R —
i G AALALER JCUR A2 107 R G5, BEAE 3 s P9 X 3 1 75 38 2 7, AR 22 0 50 m™™ . e i %7 %
B F B 2R R IR B ] B AN B 5 e sy B A T AR ML AT R A, PR A R AR U 1R
B MEITAPLRG W FE I o AN W-507 ] S 3 45 T0 A AL 55 ER 0] #5417 45 Fh i ¢ TP i 4 55,
PLPAT WA AT A S5 AT 55 o ARk, Jo AL ICZ A I 1 &5 T 46 7 R U0 300 DRt % &, A L i i
WEM P & HA Z RN 22 Btk ek L IR RE 8 v IR TR & AR EERL A %
HEHE Y Jay R, 7T A R T A SR D5 0 1 A8 R A L MR R ORI B G s B CIEIE] L el SR RO R TR H AR
BI04 MU 35 5 1) (Direction of arrival, DOA) & ik B} [d] ( Time of arrival, TOA) | 2| ik B} 7] 22
(Time difference of arrival, TDOA) DA & 5& F £ 0575 5 38 & (Received signal strength-based localization,
RSS) MY EAL o SCHRL3T 4R M T — Bl AN T3 S AT o] 5 R s B 0 2 AR 07 6 BB 8 52 BRI ] 2 4% 4 1) DOA
fliTH 45 R0 =4 zs | b 0 BAR AT AL . 5 LA B S 0 AN, 4% 22 {7 (Direct position determina-
tion, DPD) $ A3 b A 455 B8 S5 8 04 5 A F A 07 5 A 3, 38 06 1 A 2 6 ok v B A 40 B
B AR B A, B T 1 ARG B
1.4 ZEEHMERREZRIRK

o ALz BRI AT R PRk R i B AR 22— Y T B a] DO (Z0 Ak (SAR TR Ik K T SR W
5 VR AL B A BRSBTS D 2 RS AR R TC AN HL B B TR Y ik A LA S A Uk
i ) 22 B AL B A BT BRI .
1.4.1 SARS5TRABGEREGHR

SAR AL WO G A B KRR B AN C R, PIH RlG AT LASE 40 #5845 B D03 BE T LLOR B IRR 1
JEIEAF B, ORI RAAS 32 B (8] 1R AR 52 ), B8 4 7 B B0 i 5 i b ) Jas Pk L O Jis 2 IR 43 i DA R A R
P AL S o BN A, an ] v R FF SAR DG 27 MG HE AT RS HE RGBT R A — I 5 42 1 1Y il & 1R
158 Rl A 450 b B AT ST U Y L R G T vk A R T S R AR e T 2 )RR 9 R 45 ik Hoh
T L RO AR #e i% O A 35 T /NI ZE i (Wavelet transform, WT) 4 7 25 # (Pyramid) . JE F %
FE BT 4 9% 48 2 (Non-subsampled shearlet transform, NSST) AE F R AE 4 B i 28 #t (Non-subsampled con-
tourlet transform, NSCT) | & i 43 43 #T (Principal component analysis, PCA) . 5% B -4 J&-1 F1 B
(Intensity-hue-saturation, IHS) LA & FE £ %H B4 43 f# (Non-negative matrix factorization, NMF) %% . Zhang
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SRR T 4TI SR E R AT A . Yehia S KN AR S A THS B He4H A , BES K SAR BE
ik AT WGBS . Fu e T i kel A % P A7 A8 7™ T A S 335 A 25 ) 26 LAY Wl AL, B8 Hh — R £
Tl VE A RG] 3 08 A 1 T WL OB AN SAR MR REG T vk 1G5 T BRI ID AT . ARk TR EE R ST TE
T ML 408 BLE I B T PR Bl A 45050, 2020 48, Li % 7 H YR FHSUZR Y Stb A6 2 1Y a4 19
X2 T SAR B R HUR B AE BEAT Al A o Ve S5 S48t — Fh 25 4 15 18 Ak 43 B 149 UL il 4 I 4% (Struc-
ture- and optimization-separated two-stream fusion network, SOSTF ) 7 Bl il 5 HE 28 , 1% 34 1k BE 6 4 2% 3
fill & SAR FIAT UL BIR B T HMERAE . 25 B NASA 2 FIBF 5 b0 g 7 — 2Ok -F ik a4 1« AT
A PRI 5 B R G B T S A ol AR ] R ) 22 A
1.4.2 % kgebF Rtk

e 48 T WO PG R A0 215 1E =0 T 16 R B R o PR R A, SR, T
O P A5 A I DG R PR 5 B e M o ) P 3 b RO RE 2 R AT A4 . L, 77 AR T 203 R R
BALBREAR S B AT WO 5 L0 A S ER 2k Bl G L o8 GRS T R REAL I BB S H AR . 2021 4R,
Hh [ Rk 2 B K R 06 A LS A B 5 TR T — R 3 T 2040 A5 AT O R A Xk TG P 2
R /N B bR 00 38 B0 Bk R E G TS A R A R H AR AR A 1 SR T A SR R R R 2 B
54 BUF B R DUORS B2 . 2022 48, SCHR[ 41 JET X5 £L A0 1T WL OGS (6] Bl A5 AL B A0 S g 42 0 2% =5[] 43 BE 56 AN
D T4 S5 S50 A A9 J5T £ il B0 AR0 TR R, 48 o — ol B T A B 2 o R £ 40T L S A 0 6 B T 8% K 5 AT
55 Fe R A PR FFLLAN-7T DO (RIS 0 45 46 R0 o B2 LU IR) A, SCRR[ 42 148 R T — i i T4 i S 00 BK 5 W 35 Pk
A 0 R0 A ATk 7S 4 T B A 43 T R R £L A0 T DL IRR R T 1L 12t 3 R SRk R A v T A U R R
B 1 8 S A i e 0, AR B R MR L AR A W SR . SR T AL Bl A A R oY E AR R T
MR 5 IR G AE IR 5 L0 A 55 XUREZS [B) Rl A B, 1 B AT LS (Z0A0 IR R JC LS S 2 RS Y
FillA A BT Y . g B R AT I AR S R B A DU TE R R R AT O HE BEPE BE iR R DA AR il
G Z RSN ER T T R 2808 £ 2 Rl AN Ak BRET U RIS .
1.4.3 A RAEA o5 T IR

VLG AT 48 53 SR A% 8 5 1k RS TR BE 2% 2 B 5 vk o A% G 5 Wk B T80 78 e 2 Ak R 2 155 1) D 341
Ul AN A B TR A o) Y U i TR R T 0 2 i1ty RO AL B ) T v B T PR
WL AR S RS R R A PR L X T UUT 45, TR 2 20 Dk UL sk 5 A A A A R B
5 )7 RO S B L SCHR L4506 P A A 0 7 AR D R A SO A I A R . SCk
(46 1768 SCOR FL b AT 5 B0 25 RR RS 45, A S T i 412 B0 SCAS 8 38 O 1 48 1%, Ak 5 o ofF Pl A0 2 A 7Y
ControlNet 4= i 81 F o SCHR[47 [4 H = 205 O3S IR (5 T A HE 28, DL SCAS B3R 295 4 s &) 5 B 25 ) R AIE =
BB N ES , JE W SCA P A i 3 SR LI [ B, 45 6 45 4 o 81 2B 45 4 — B0 1 R R 2 Ta) R AIE
A AF S PR BB R I s o SCERL 48 T4 H iy A3 A= BUHE 22 Custom Video SCHF LA SCA RIS Lo #1 K Ry
BT bR R ) SR I A PR e B . Song 1R 2018 AR B Y T T BS AR SR
B P A A IG5 T 35 o B 28 D 5 B L Mla 250 A R 4R 1 T — B T R UK L R 4% (Generative
adversarial network , GAN) {9 21 45 1] I R A B 5 o Xiao 251 3 b o 145 58 245 1l 4 R A 785 7 25 1)
RO B T 3T GAN B9 MR A& 28 MU . 202148, Mildenhall 4548 i b 2 46 5 2 ( Neural radi-
ance field, NeRF ) {9 RIS 18 e A= )07 15 0 [R14F , Ho 456348 M T 22 e 4 o HE 2R 45 78 ( Denoising diffusion
probabilistic models, DDPM) . 2021 4F , Nichol 4™ & i1 1 3% F DDPM K 3¢ A 51 [ {5 15 1 25 74 pli A 750
GLIDE (Guided language to image diffusion for generation and editing) . 2022 4F , Ramesh %" $2 {1
DALL-E2 ¥ Z 35 4 gl FEAF 43 o A SCAS B CLIP P4 G 1) d A0 A CLIP Pl 45 i 5k 38 Pl 5033 1 4 aof
i, A PIA DDPM 435 il 5, B4 T e GLIDE SRS 40 ifi & 57 & 0 2Rl 45 28 . 2023 4F, Blattmann
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SECVHR T R T OB A SURAE S AY L. R0 C B % R 0 T B PP 559 (Blind image/vid-
eo quality assessment, BIQA/BVQA ) J& 5 T X /b & FQ 5l i SR Ak 1 D0 &5, 523 H F 7 23 B A i Ak s
REIA ke g HEA W BIQA/BV QA BRI T I . SCHRLS7 JSE B 1 — > LAY B A Y 3%
TR fefi FH 215 FH P A2 UM 25 (Usser generated content, UGC) #4E F A W B R IE S H 2 7 Bl & 7 MWJLA
P B B 47 19 BY QA B P e B A AR AE o Kang 25042 T — I R0 FH 265 A o 2 0 4% ot 0 ] 14 Je e I
8 BIQA HESR . PaQ-2-PiQ ™ i — ZR B V& J& i 12t 11 I 55 80 , 4 4% P2P SLZR A P2P Rol 4 A4 Al
P2P Ui B A o T YI 25 %) ResNet-18 /8 i T, RolPool 2R & K K fAM T i & {5 B . # Transform-
ers i F T VQA 1] BI A9 45 130 T4 S StarVQA' & v i 4 B L1 24 £ B 11 2 855 Ak 1] 51 953 2 A2 e 4 1
Y ou ZE R Tl R 4 S22 19 4% oA TN i SR R D % IR AIE 16 R B A, DA B — i S 100 4 B e o
(Long short-term convolutional transformer, LSCT ) 42 #4) > il & 57 45 457 AiF I T 00 & 1R 90430 55t 7 .

T AL Z B3 FE 38 A LB R XS L W3R 17 o 2480 T A HLGE s 35 A ilUbik 50 3= 2 A vh 7E R
AT 4 A S BT i PP AL, 2R OB SUAF A LD . 32 PR T AP 3G {7 25 i Y BRI iR

MNP B0 e 2 R o) 20 3 25 4 A R T, O R AT IO (L Ah O R I8 (SAR Ik TEE M A5 £
ARG R A5 L AT DA — AR AR BT AT 5T S R SR AR IT K

F1 AANSESEEIL NSRRI L 547

Table 1 Comparative analysis of the state of the art in UAV multi-modal ultra-wide spectrum cognitive sensors

ATy W) AR 1 3 e HOA M 2 ARG TT ]
HerE/ B MRAHMLEES] (2022) of% ] P g <E R Z B ML+ LN A b
LLANERAT £ AM-TT WL CNN RS (2020) oA A3 BERBCHEDE 22K iy 3] i 2 B A T %O Ak L
SAR AL ik X/C Bt SAR(2013) oW il B T O B W ik Bt [ AT A K
oS LYk B b B (2018) PR BN AN AR (1 mm) o3 2 K IR B A A
J— *DPD H 2 . (2019) o [F) AT 5 43 B M o 43 R [R) A 2 A 5 0 )
o Z W B 7] R 4 (2023) oI PN R AR A IS IAY =1 oF% ) T Hi i 3 A5 Rl A
PAVEIN *SARJGAEM B Rl 45 (2022) o A BR T XURE A o DU AL I 245 o oA
oZ[Ah-1] I GAN A i (2021) o SEIRHPE 22 (500 ms) A AL £ )2 U Bl A A
R -
g IR ONRE 2021) L T S

AR A L (DALL-E2, 2022) bt = 18 U ELFTAL -
B

2 RANSESBELZANNRESEN

A ] P9 25 3 A4 0 AL 2 B3 9 1% DN ST 6 AR T RE R B Ak /N (AR 2 A 2 e A
P 2R Z R UG AL T SR e DL K 20 B A A8 A A o b T 3 4 A TR, A0 R 1 FTOR o

Jo N2 #5525 0 50 1 N0 (S35 PR LR R 2R 0 0l T ol 30 R 2 . L3RR
AR ER DN AR A AR R E A B LT 0 AR ) A B E R 4R (= 4R Sh Atlas 2001 DK 5%
BB | openEuler 248 .GIGABYTE QBPi-1115G4AMS 8 i e | 45419 Windows 245 HL 4 A Jet-
son NX _E## 19 Ubuntu 2 40) A 25 46 0 8 b 1e) 4 Mique B8 22 b ) 44 TDBC g1 854l Ak 38 5 7
fitt RS Rl A b 3 5 A0 B B TR 4 A 3 A A T 0 4 ) A B AR L b TR S R R R G H b T
i 55 B A2 B b T 4 20 2 ko b T IR 55 i A2 A e T R BRI e ) 2 RS G T R e A
VR S 5 DI S B b T 22 A 2 B A BHASE B T S R i T 2 A AR SR — R AL A 5
FERLHL TE AN R GAT 55 FR) 5 8 BE R B R e RS A B AN 25 5 A 34 S AR B
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Y. oA i T W
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Fig.1 UAV-borne multi-modal ultra-wide spectrum cognitive instrument

TN L2 A5 258 L T8 N RV 2R G2 T B/ S ZRAG BT, IR 55 3 0 2 114 0 =0 ok Kol 7 2 i A il A2
R R WA 2 B o BRPE ORI By 4 )R

B2 - ST IE R AP REROS 12 0T 1 A 46 2 RS R B HLARBONE R A7 R B
i 65 3 R B A S 5 RO A o A% I AL A Y B TR AT R A B R i R o A — B
VAR A7 5 AT A A 0 M08 . 7R BRI AR A S A T, X A A R R e R AT A B LR e
H 1) SO R AT P o 20 S B L i O AR 2 Bl e s R SR IR X 26 0 AT el Bidle S 4R 14
VIR D 2B RS AR O . R 2 18] AL S R 12 b LR TDBC T bl 3 2 B A il
Ak FRESCHE A it 50 TR R I e TR S S A 9 SR v TR T R R AR G R I RO S 2D A

SRR ST R GU SR R U e DA B s AT B IR BRI, AR AL AR 2 RSN (2
ASF A R R R AL R Bk R R A AT R SRR 1 L A o 2% D) B vk b T 22
RSN v T 22 A i 9 Ak O 2 E AR AR IR B 8 0k L 22 b AR R B0 L TR H A
fr BRI 2B RR T TR 0 L I 2R AR B M A AR A AR XS R SR R AR B 11
HAY AT, RROE e ASF & 45 D 2R M 2 R 2 30N 3k .
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RZSNEAR IR BARE RIS | SWRAHRI ARG ARG BE | SESHUREEN SRR

ZIRZS BB ZIAS LA BEE

ot g AR
PLESIE AT T
BREGET A b TR AR

AR

B vuasrzs N stmsE T A%
E2 AWM ZESE TN RS

Fig.2 Multi-modal ultra-wide spectrum cognitive software system for UAVs

PR JZ o A 45 %) 20 B8 25 AL B 1 i - 4 ) T ALV AT 55 B 2 1 3 B2 0 28 408 23 b 188 {5 1 3 D) 46k
F0 4 A 2 Sl DA R B 1 0 T R R A AR A 55 5 SR RN BR BT 25 A, gl S 9 B A% RN L R AR
Pt S BEIR A n] A A B WO ST 55, 80 ORI AT 55 A9 e A AT o PR B R o IR A 4 0 A AT
S5 I E T A BRI 2R G0 B IR AT 55 9 58, A BT 55 FE A rhols A8 LA S TR 1 AR 42 1Y
AT 55 A8 B LA R g 7 P 2 48 (34 A 5 98 1 42 1 e 55

B - T2 57 22 G0 20 B 25 A% JEAs 2 I 4% 3 15 ) 45 4 B T P B 98 A 4 A A R i ) 22 A
O SE RN AN 2 RO €N SLMAEING R #78  S | IRTCR LIRS I AR I Z S oS B O Al /8 g e
fili A2 PR BT AN AL 2% F AR A S AR IO A B 2 Ak 2 A Ak B L K 2 YRR R AR S — R A
o 25 Tl A S 2 AR R 23 BT 45 2R DA BV Y 5 3OS I e 7t ok, i B A T TR JE N PIL AR GE R IS AT RS R
P BRI, 300 o o 22 o SRR Kl R AT 7 8 6, i oo X R ARSI R AN BR R BE D <

3 XBEAARER

3.1 KMmMESERELANEEREAR

FEl 28 7 R i R AT 55 4 T4 A 1 38 DD 5 oK L AR SO 9 T E SR R R FE 55 1 i B K
R[] 282 A AT 1) T A 3 T AL, 52 BB A0 YR 5 BB U5 T AL B AR Y | v 2801 Jmy it i R TR 2l 7 DT
i 55 BIK 2l B AR 55 S BRI FT T8 AR LB TE AL SR AR
3.1.1 EAARBELAMNZRMA LT

I 1 F% (Vertical take-off and landing, VTOL) £ A ) i 8 2 $2 7+ T K WL TE AHLAE B 2 30 5%
AL RE Ty, A AT X A% G A R g b (R L AR 3 R R R R TR R T kR A )
BIERMBGRERENNEL T , REE A B ERIN . VTOL B YA e I AL & AP 6E | iE
Xof QAT AR B B (] A5 DG B AR B TS e R, Kl A e R A T E 3R TC AN HIL Y R A T i
IR B o TR A BE TR TC ALY B T ok A7 AE W1 0 0% B -7 B KON, 3K E R DN BB P L - £ R
DIECHC S 2 Y AT B it . SEGERRIEIL ANARL IRG 30 1 R E Sk AT &
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A5 Al DR b T SR W 1 R GO L A i MR T 4 R 4 L T R A 7 P TR R DB
T A O T Al Je <0 R A N 2 G P 0 T R AL B R L X R ] R ATIRAS T 8 ) R 22
S AT T I S S 1 AT SR T D R, S B L R 0 P I SR R T
e T i /R I A A BT B R L FSERESE T 60 S 4 H (3 1 A R AL S AE I 2 R 4
T TS 5 A )y SR TS Y 30 2ok 4 43 B 6 T A Y 0 AR I 00 A, 7 1 A2 30 7 R 4 29 7 4
PERORTR T, eSS B T IR A B TR A WLE RS B PE 1L BT . 25 4 BV 2 B0 R Kb e R X £ i
[ 6 PG A 250, 0 R 3% 1 B WL B 7
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Fig.12 System block diagram of the airborne multi-channel wireless spectrum monitoring receiver
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Table 3 Performance comparison of moving target detection and tracking in SAR imagery
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Fig.15 Schematic diagram of the multi-modal situation awareness generation algorithm
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Research on UAV Multi-modal Ultra-Wide Spectrum Cognitive Instrument

SHI Yunhe, ZHANG Xiaofei", WU Qihui

(College of Electronic and Information Engineering, Nanjing University of Aeronautics &. Astronautics, Nanjing, 211106, China)

Abstract: The unmanned aerial vehicle (UAV) multi-modal ultra-wide spectrum cognitive instrument
constructs an intelligent remote sensing system by deeply integrating visible light, infrared, synthetic
aperture radar (SAR) , and wireless spectrum sensors. It aims to overcome fundamental bottlenecks in
traditional UAV remote sensing: Limited endurance severely constraining detection range, insufficient
payload capacity restricting multi-modal perception, weak onboard computing capability causing real-time
processing delays, and finite communication capacity hindering high-fidelity situational assessment. To
address endurance challenges, the design employs a hybrid energy configuration combining piston engines
and lithium batteries with a vertical take-off and landing (VTOL) flying-wing layout, significantly
enhancing operational longevity. For payload limitations, it develops a compound-eye multi-camera array
for wide-field high-resolution imaging and integrates a W-band miniaturized SAR radar with
submillimeter-level vibration compensation technology, enabling airtime-frequency multi-dimensional
collaborative perception. To resolve real-time processing constraints, a spatiotemporal registration
framework and lightweight deep learning model establish a multi-level fusion mechanism
(data-feature-semantic layers) , elevating detection accuracy for low-observable targets beyond 90%.
Targeting ~ communication  bottlenecks, innovative  generative  coding ~ combined  with
knowledge-graph-driven situational reconstruction achieves high-fidelity 3D situational generation under
400-fold compression, quantified via a no-reference quality assessment model for semantic fidelity.
Validated in defense reconnaissance for real-time tracking of concealed targets in complex electromagnetic
environments and in emergency response for flood monitoring and 3D reconstruction, the instrument
demonstrates practical value in complex scenarios. Future research should deepen cross-modal semantic
understanding optimization and dynamic cooperative control of UAV swarms to advance intelligent remote
sensing toward real-time, autonomous cognitive evolution.

Highlights:

1. A design scheme for a UAV platform integrating hybrid energy sources (piston engine -+ lithium
battery) with a vertical take-off and landing flying-wing configuration is proposed, and a comparative
analysis 1s conducted on the current research status of multimodal ultra-wideband cognitive sensor
technology for UAVs.

2. A multi-level “data-feature-semantic” fusion cognitive mechanism is established, which combines
lightweight deep learning models with four-modal (visible light, infrared, SAR, and wireless spectrum)
spatiotemporal registration. This is expected to significantly enhance the detection accuracy of low-
observable targets in complex scenarios.

3. A high-compression-ratio situational generation technology based on generative coding is proposed,
which is anticipated to achieve high-fidelity 3D situational reconstruction and ensure semantic fidelity
through a no-reference quality assessment model.

Key words: unmanned aerial vehicle; hybrid energy; multi-modal payload integration; multi-modal fusion;

quality assessment
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