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摘 要： 本文旨在系统梳理海空异构多智能体系统协同技术的研究进展，明确其核心协同范式，并揭示

“感知‑决策‑控制”全链路紧密耦合所引起的系统性挑战。研究方法从系统级功能视角出发，剖析了由

规模效应与异构效应所导致的系统扩展性、动力学匹配与整体鲁棒性等全链路挑战；继而，对支撑系统

协同的 5 项关键技术——多源数据融合、通信网络、任务分配、路径规划与编队控制的主流方法进行综

述与对比分析，评估其优劣及适用场景。分析表明，该系统在海上搜救、广域巡检等任务中潜力显著，

但迈向实际工程应用仍受制于跨平台集成困难、动态环境适应性不足和测试评估体系缺失等技术瓶

颈。未来需聚焦于全链路协同理论建模、轻量化智能算法及标准化工程架构等方向持续突破，并拓展

跨域协同新模式，以促进海空异构多智能体系统向更高智能、更强鲁棒和更广应用的方向发展。
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引　　言

计算机、通信与自动化控制等领域的突破正推动无人系统技术从单点智能向群体协同的范式变

革，为海洋环境的高效、智能、立体化开发提供全新可能。然而，从广域海洋监测、海上应急搜救到精准

资源勘探，传统依赖单一平台或小规模同构群体的作业模式在感知范围、决策智能与任务适应性方面

面临固有瓶颈：单一平台难以同时兼顾覆盖范围与探测精度，同构系统缺乏应对复杂任务的差异化能

力。在此背景下，海空异构多智能体系统（Heterogeneous multi‑agent system， HMAS）应运而生，它通

过集成无人机与无人船在视角、机动性与载荷上的互补优势，构建了跨域立体的协同作业能力［1‑5］。该

系统的核心科学问题在于如何实现物理空间异构动态平台与信息空间智能算法之间的实时闭环交互

与全局协同优化，其技术体系通常围绕“感知‑决策‑控制”这一基本闭环展开。其中，协同感知是构建全

局态势图的基础，协同决策是生成优化策略的关键，而协同控制则是实现精准物理执行的保障。

当前，学术界与工业界围绕海空协同已展开广泛探索，但现有研究多数仍集中于对单一环节的独

立优化，或虽尝试构建全链路框架，却普遍采用“模块串联”范式，将感知、决策与控制视为相对独立的

子系统进行简单拼接，未能从系统论视角深刻揭示层级间深度动态耦合所产生的系统性挑战。在此背
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景下，我国对于智能制造与人工智能的顶层规划为该领域指明了极具前瞻性的发展方向。《新一代人工

智能发展规划》将“群体智能”与“自主协同”列为关键方向，《“十四五”机器人产业发展规划》也明确强

调“推动机器人集群协同作业”。这些战略规划的共同导向表明，智能体技术的发展重心正从提升单机

性能转向实现多智能体在感知、决策与控制全链路层面的深度融合与协同。从系统论层面揭示，感知、

决策与控制是构成智能体协同能力不可分割的有机整体，其发展必须系统推进，任何单一层面的孤立

突破都难以转化为系统整体的有效赋能。

因此，系统性地揭示“感知‑决策‑控制”全链路协同的内在机理，已成为突破海空 HMAS 性能瓶颈

的关键所在。本文旨在对相关研究进展进行系统梳理：首先，将分别阐释协同感知、协同决策与协同控

制 3 种范式的主要目标、核心架构与研究前沿；进而，从规模效应与异构性效应两个维度，重点分析全链

路紧密耦合所引发的系统级挑战，揭示局部如何制约整体效能；在此基础上，介绍协同环节中多源数据

融合、通信网络、任务分配、路径规划以及编队控制技术体系；最后，结合实际应用剖析当前技术在实际

场景中的落地瓶颈，并展望未来发展趋势，以期为构建高效、可靠的海空协同智能系统提供全面的理论

参考与实践指引。

1 异构多智能体协同概述  

随着任务环境复杂化与任务需求多元化，传统单智能体系统及小规模同构多智能体系统在应对大

范围、高动态、多目标的复杂场景时面临严峻挑战。在此背景下，HMAS 通过整合不同感知能力、运动

特性与功能专长的智能体平台，构建起功能互补、协同作业的新型智能系统架构，为复杂环境下的任务

执行提供新的技术路径。本节将从系统内涵与协同范式出发，深入剖析 HMAS 相较于传统同构系统的

核心优势，揭示其在应对复杂场景时的独特价值。其任务场景如图 1 所示。

图 1　异构多智能体协同场景

Fig.1　Heterogeneous multi-agent collaboration scenario
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HMAS 是由在功能特性、动力学模型及感知‑决策‑控制能力上存在显著差异的智能体构成的协同

系统。其核心内涵在于通过异质平台间的深度信息交互与任务协作，实现单一平台或同构系统难以完

成的复杂任务目标，协同运行逻辑如图 1 所示。该系统不是异类平台的简单组合，而是通过功能互补与

能力集成，具有更强大的整体智能的系统。现有研究围绕 HMAS 的协同机制，主要形成了 3 类核心范

式：在感知层面，通过多源异构数据融合与时空对齐，构建统一、可靠的全局环境认知，提升系统对复杂

环境的感知能力；在决策层面，依托异构平台的差异化能力进行动态任务分配与协同规划，实现系统资

源的全局优化配置；在控制层面，通过整合异构平台的行为与运动特性，利用差异化动力学特征增强系

统整体的灵活性与执行鲁棒性。这 3 种范式相互关联、层层递进，共同构成了 HMAS 实现协同智能的

理论基础与实践框架。

面对现代任务场景在空间范围、环境动态性和任务复杂度方面的显著提升，传统同构多智能体系

统与小规模协同方案日益暴露出其局限性。同构系统由于平台功能单一，难以应对任务需求的多样

性；小规模系统则因资源有限，无法有效覆盖大范围作业场景。相比之下，HMAS 通过异质平台的深度

协同，在 3 个方面展现出显著优势：在系统扩展性方面，HMAS 能够根据任务需求灵活配置不同类型的

智能体，通过功能模块化组合适应多样化的任务需求，避免了同构系统在规模扩展时出现的性能瓶颈；

在任务适应性方面，异构平台的功能互补特性使得系统能够同时兼顾广域覆盖与精细操作，如无人机

与无人船的协同实现了“高空侦察‑水面作业”的高效配合，显著提升了系统在复杂环境下的任务完成质

量；在系统容错性方面，HMAS 中的功能冗余设计确保了当部分节点失效时，系统仍能通过任务重分配

维持基本运行能力，大大增强了系统的鲁棒性。这些优势使得 HMAS 能够有效突破传统协同方案的局

限，为海空跨域协同、城市应急响应等复

杂场景提供更为可靠的技术解决方案。

本文聚焦海空 HMAS 的核心技术与

实现范式，以系统级子任务为线索，系统

梳理其关键挑战与支撑技术，明晰跨域

协同的研究路径。全文遵循“范式—挑

战—技术—应用”的逻辑结构：第 2 节阐

释感知层、决策层、控制层 3 类协同范式，

并分析全链路耦合时产生的系统级挑

战；第 3 节评述现有前沿技术体系的发展

情况；第 4 节结合实际讨论应用落地与工

程实现难题。本文旨在系统梳理 HMAS
的理论进展与实践瓶颈，为该领域研究

提供参考。本文内容组织架构如图 2
所示。

2 面向全链路协同的“感知‑决策‑控制”框架与挑战  

在海空跨域作业中，无人机与无人船等在观测模式、精度、视角及平台结构方面存在显著差异，其

协同核心在于实现“感知‑决策‑控制”全链路闭环优化。为系统剖析此协同机制，本文基于功能链将协

同模式归纳为 3 类：旨在构建统一态势理解的感知协同，负责生成最优任务规划与轨迹的决策协同，以

及实现多智能体协调一致运动的控制协同。针对不同场景优化上述模式，是提升系统整体性能的

关键。

图 2　本文内容组织架构

Fig.2　Organizational structure of the paper
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2. 1　感知层协同方式　

感知层协同范式旨在融合多源数

据构建全局共识态势图，以达成环境

与目标的一致性理解。其核心依赖于

多源数据融合技术与高可靠通信网

络，前者是处理多模态、跨平台信息的

根本方法，后者是保障数据实时交互

的传输管道。该范式作为全链路的起

点，为后端的任务分配、路径规划与编

队控制提供统一的信息基座，其输出

质量直接制约整体系统的智能上限。

该范式的核心目标与概念框架如图 3
所示。当前研究前沿聚焦于通过多源

数据融合与跨平台协同来克服海空异构平台在感知模态、时空基准与环境干扰方面的固有差异。为应

对单一平台感知能力受限的挑战，文献［6］构建了无人水面艇‑无人机协同系统，通过无人机搭载的轻量

级语义分割网络为无人水面艇提供实时全局地图与障碍物信息，有效拓展了水面平台的感知边界。在

提升视觉导航精度方面，Wang 等［7］提出了基于深度学习的视觉检测架构，通过两阶段结构（位置估计+
航向角估计）提升目标定位的准确性与效率。针对空‑地 HMAS 在协同任务中领导者对追随者自主动

态分组与编队控制的难题，文献［8］提出了一种基于权重因子与动态势能场的三层架构群体控制框架，

实现了高效自主分组与有限时间收敛编队。此外，由 Cao 等［9］提出的基于信息协同的无人机、无人水面

艇和无人潜水艇异构系统被证明能够通过协同感知提供更丰富的时空信息基础，为复杂任务奠定坚实

基础。然而，跨域感知的系统性校准与融合仍是当前研究面临的核心挑战。现有方法在面对复杂海洋

环境下的多重干扰时仍显不足：一方面，波浪扰动、介质衰减等环境因素导致感知数据质量不稳定，直

接影响后续决策的可靠性；另一方面，来自不同平台的感知数据在时空基准、数据维度和特征表达上存

在显著差异，难以建立统一的表征框架。特别是在动态作业环境下，无人机的快速全局感知与无人水

面艇等的局部精细感知之间缺乏有效的自适应融合机制，难以实现真正的共识感知。更为关键的是，

现有研究均侧重于感知数据的输出，未构建“感知质量反馈调节决策”的闭环机制，系统仅被动信任感

知层构建的共识地图，进一步限制了后续决策层的优化能力。这些问题共同制约了系统在复杂环境下

的感知性能，成为实现全链路协同亟需突破的关键瓶颈。

2. 2　决策层协同范式　

决策协同范式旨在基于共识态势图，协同优化解决“谁在何时去何地做什么”的联合决策问题。其

核心技术体现为任务分配与路径规划的一体化求解：前者确定执行主体与任务的匹配关系，后者生成

满足时空约束的运动轨迹。该范式高度依赖感知层提供的态势信息，并通过通信网络交换和协调决策

变量，最终将抽象态势转化为具体的、可执行的任务序列与路径指令，下发给控制层驱动协同行为，该

范式的核心目标与概念框架如图 4 所示。当前研究前沿致力于通过设计高效的算法与架构，以解决海

空异构平台在任务类型、执行时序与能力约束下的协同规划问题。为应对多智能体在动态环境中的任

务分配挑战，Wang 等［10］通过引入时间窗约束，有效解决了异构无人机在不同任务执行时间窗口下的协

同分配难题。为刻画不同时间段的异构复杂约束，Wang 等［11］进一步实现了多阶段任务的协同匹配与

规划，在异构群体中的不同任务阶段展现出较高的可行性。分布式博弈论也为群体智能决策提供了新

图 3　感知层协同

Fig.3　Perception layer collaboration
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路径。一种基于任务牵引的异构网络

多方多策略演化博弈框架被提出，通

过规划无人机的协同对象，实现了任

务在异构网络中的自适应分配［12］。

为应对体系架构层面多样化的新需

求，Liu 等［13］提出了一种任务导向的

混合式架构设计方法，其分布式的扁

平化结构和事件驱动的协同触发机

制，为异构分布式决策提供了理论参

考。此外，在实际场景的应用环节中，

一种自适应的舰机路径协调算法成功

解决了移动目标同步与路径规划问

题，展现协同决策在海洋作业环境中

的实用价值［14］。然而，现有决策协同方法在应对高动态、强实时的海洋复杂环境时仍面临严峻挑战。

多数优化算法为追求最优解往往伴随较高的计算复杂度，难以在任务窗口短暂、平台算力有限的海洋

场景下满足即时决策的时效性要求。同时，极端海况会急剧改变平台机动性能与通信质量，这不仅使

预设的协同时序与路径规划迅速失效，还进一步放大了任务的时间窗口约束与多平台间的协同耦合约

束，而现有方法普遍缺乏应对此类强不确定性的在线自适应与快速重规划能力。此外，当前研究多聚

焦于单一类型平台或特定任务，对于无人机、无人水面艇等跨域平台在动态对抗环境下的协同决策，尚

缺乏能够统筹计算效率与环境适应性的轻量化、鲁棒性协同框架，这成为了制约全链路协同突破的一

个核心环节。

2. 3　控制层协同范式　

控制层协同范式作为系统的物理执行器，旨在精确、鲁棒地将决策层输出的角色安排、任务目标与

规划路径，转化为多智能体间协调的实体运动，以保持稳定的群体形态。其核心技术是编队控制，并依

赖感知层的实时状态反馈与通信网络的状态同步。该范式不仅执行指令，其运动效果（如队形保持、避

障状态）也能作为“行为感知”反馈至决策层，构成“规划‑执行‑评估”的闭环，该范式的核心目标与概念

框架如图 5 所示。当前研究聚焦于通过创新控制算法与策略，以实现异构无人系统在复杂环境下的高

精度编队、可靠回收及协同运动。为提升无人车群在城市场景下的作战效能，Zhao 等［15］设计了无人地

面车辆小集群混合协同规划与控制系

统，通过交互设计、驱动算法开发与实

景测试，验证了该系统的有效性。针

对波浪环境中无人机在无人船上的降

落难题，一种基于计算机视觉与双向

长短期记忆神经网络的同步运动控制

策略被提出。该策略通过预测无人水

面艇姿态并设计 PID 控制器，显著提

升了复杂海况下的着舰精度［16］。面

对异构系统通信受限的挑战，文献

［17］设计了一种分布式一致性控制策

略，在存在通信延迟与丢包的情况下，

图 4　决策层协同

Fig.4　Decision layer collaboration

图 5　控制层协同

Fig.5　Control layer collaboration
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成功实现了编队轨迹跟踪与避障。此外，对于感知与通信受限下的四旋翼编队问题，分布式模型预测

控制方法被证明能有效建立含通信延迟的编队控制模型，为多智能体在受限条件下的协同控制提供了

重要参考［18］。为进一步增强异构系统的动态适应性，结合图论与多一致性算法的编队策略，通过时变

群体一致性强化了系统容错性与抗干扰能力，显著提升了复杂环境中异构集群的工作效能［19］。然而，

现有控制方法在高动态、强干扰的复杂海洋环境中，其性能边界与可靠性仍面临严峻考验。首先，先进

控制算法的在线计算负担与海洋平台有限机载算力矛盾突出，毫秒级紧急规避或队形重构场景下，可

能难以满足实时性要求。其次，现有方法对感知与通信的依赖性过强，如基于视觉的降落策略在极端

天气下可靠性骤降，模型预测控制等算法在通信长时间中断时易失效，系统缺乏“感知‑通信”链路易中

断时的降级自主控制能力。再者，控制策略多为特定任务定制，缺乏统筹无人机、无人水面艇等异质平

台在不同任务模式间平滑切换的通用控制框架。尤为关键的是，未将环境动力学模型作为前馈或扰动

观测器深度嵌入控制器，系统对外部强干扰的主动抑制能力不足。这些不足导致现有控制方法在真实

海洋环境下的适应性、坚韧性和智能水平存在显著差距，是实现跨域异构系统全链路自主协同需攻克

的关键难题。

2. 4　全链路协同的耦合机制与系统级挑战　

前文分别探讨了感知、决策与控制层的协同范式与研究进展，然而现有研究仍存在显著局限：一方

面，大量工作集中于单一层面的独立优化，缺乏跨层协同视角；另一方面，即便已有研究尝试构建“感

知‑决策‑控制”全链路协同框架，大多也将各层级视为相对独立的模块进行串联，未能充分揭示并应对

由层级间深度动态耦合引发的系统级挑战［20‑21］。这些根植于系统内在机制的挑战，尤其会在规模与异

构两个维度上被急剧放大（图 6），具体表现为：感知误差会沿链路向上传递并非线性逐级放大，形成“误

差累积效应”；各层级迥异的时空尺度在动态环境下难以协调，易导致系统响应失配；层级间的反馈闭

环在提升适应性的同时，也引入了振荡或不稳定的风险；更为关键的是，单一层级的性能瓶颈会通过耦

合作用制约全链路的整体效能，这表明任何优化都必须置于全局约束下进行系统的考量。

2. 4. 1　规模效应引发的全链路挑战　

系统规模的扩大是导致多智能体系统复杂性呈指数级增长的关键因素。智能体数量的增加不仅

使系统内部交互关系剧增，且对“感知‑决策‑控制”全链路构成了根本性制约。这一规模效应引发的系

图 6　全链路耦合

Fig.6　Full-chain coupling
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统级挑战，集中体现在通信拓扑、计算复杂性与系统鲁棒性 3 个核心维度，并随链路层级传导与放大。

（1）通信拓扑与数据交换的可扩展性障碍：在传统小规模协同中，智能体间通常可采用点对点或简

单的星形拓扑实现有效通信。然而，随着系统规模扩大，维持智能体间的有效信息交换面临通信开销

的超线性增长问题［22］。智能体间因任务需求而产生的动态移动性差异，导致网络拓扑持续剧烈变化，

使得构建稳定、低延迟的通信骨干网络面临严峻挑战。特别是在 HMAS 中，智能体产生的信息在模态、

粒度、语义和实时性方面高度异构，难以高效聚合或压缩，这一特性使得通信带宽问题在规模扩展时更

为凸显，加剧了其成为系统扩展关键瓶颈的程度，对跨域自适应通信架构设计提出了极高要求［23］。

（2）决策、学习与优化的计算爆炸问题：面向大规模 HMAS 进行联合策略搜索、任务分配或角色调

度时，决策层面临的核心挑战在于决策空间的组合爆炸问题［24］。智能体数量的线性增加直接导致系统

决策空间的维度呈指数级扩张，使得传统适用于小规模系统的优化算法难以直接扩展。尤为关键的

是，在 HMAS 中，智能体功能的异构性进一步放大了这一规模效应：平台能力的本质差异导致智能体策

略间存在高度非线性和耦合，致使整体决策空间的复杂度和规模远超同等数量的同构系统。此外，无

论是分布式还是集中式求解策略，其效能均受到系统通信能力的严重制约［25］。规模扩张带来的决策复

杂度呈超线性增长，使得高效可扩展的协同决策成为大规模 HMAS 的核心瓶颈问题。

（3）系统鲁棒性与容错管理的脆弱性凸显在小规模系统中，单个智能体故障的影响范围有限，且任

务重分配的复杂度较低。然而，随着系统规模扩大，个体故障或通信中断等异常事件的概率显著上升，

直接威胁系统的整体鲁棒性［26］。更为关键的是，规模扩张导致系统功能链不断延伸与复杂化，某一环

节的失效可能引发链式反应，导致关键功能链断裂造成系统性崩溃。在此背景下，HMAS 的异构性进

一步加剧了恢复的难度：由于智能体功能的专用性与不可替代性，系统难以像同构系统那样快速重组

资源与动态重分配任务。尽管系统整体资源总量充裕，但实时评估剩余异构能力能否满足核心任务需

求并快速生成可行重组方案的复杂度急剧增加，显著放大了大规模 HMAS 在动态环境下的整体风险。

2. 4. 2　异构性效应引发的全链路挑战　

异构智能体在感知、决策、控制能力等方面的本质差异，是构成 HMAS 复杂性的核心诱因。与同构

系统天然具备的统一交互基准相比，异构性导致智能体间缺乏一致的协同接口，使得原本可高效实现

的协同过程面临结构性瓶颈。此类由异构性效应引发的挑战，深刻影响系统在态势认知、决策协调与

通信互操作等关键环节的性能上限。

（1）跨模态感知融合与统一态势认知构建困难：构建全局一致且实时的共同认知是协同的基础。

在同构系统中，各平台的信息流高度一致，大幅简化了认知构建过程。而在 HMAS 中系统信息源高度

多样且数据量巨大，这导致来自不同平台的感知信息在系统误差、时空同步精度以及非高斯噪声特性

等方面呈现出本质差异［27‑29］。有效融合这些异构、冗余的数据流，不仅依赖先进的跨模态融合算法，还

需解决因智能体本体状态导致的环境理解歧义［30］。随着系统规模扩大，不同角色智能体对信息的类

型、粒度和实时性需求差异更为显著，按需分发与满足个性化认知需求的复杂度急剧上升，进一步增加

了构建统一、实时的态势图的难度［31］。

（2）异构目标协调与动态角色分配困境：协调具有不同乃至冲突子目标的智能体，并为其分配合适

角色，构成了 HMAS 的核心决策挑战。同构系统中，智能体在功能、性能与资源消耗上高度一致，任务

分配可简化为对可用资源的序列匹配，以优化全局目标为主。而在 HMAS 中，决策问题由单一目标优

化转变为复杂的多目标权衡。系统需在保障任务完成的基础上，统筹优化整体效率、资源消耗与系统

生存率等多个冲突目标，以适应智能体在功能专长、能效比与执行风险等方面的固有差异。这种基于
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异构能力的优化机制，可将检测、跟踪、打击、通信中继等专业化任务动态分配至最适合的智能体，从而

提升系统整体效能［32‑34］。然而，随着系统规模扩大，目标维度也随之扩张，寻求系统全局最优的帕累托

解难度也将急剧增加［35］。

（3）通信协议互操作与动力学壁垒增大：实现智能体间无歧义的信息理解与协同动作是系统高效

协作的基础，这一条件在同构系统中因通信协议、数据模型及动力学特性的统一而天然满足。然而，在

HMAS 中，系统集成面临来自通信与动力学两个维度的基础性障碍。在通信层面，不同来源、平台或功

能定位的智能体可能采用截然不同的通信协议栈、消息结构及数据抽象模型，实现无缝协作需依赖复

杂的中间件、网关或本体对齐机制以达成语义统一［36］。在动力学层面，无人机与无人船等异构平台在

运动机制、机动性、响应延迟及运动约束上存在本质差异，导致难以建立统一的协同运动控制模型。通

信与动力学的异构性相互交织：协议互操作性障碍制约了协同控制指令的可靠传达，而动力学模型的

失配则导致指令难以被精准执行。随着系统规模扩大，这一复合挑战被急剧放大，异构单元间通信需

求与运动状态的异步性更为显著，对通信调度与运动控制的协同智能提出了极高要求［37］。

3 HMAS的核心技术  

针对上述规模与异构性带来的挑战，现有研究大多基于同构多智能体及一对一异构系统中的成熟

方法加以拓展，逐步构建起适用于 HMAS 协同的技术体系，为该领域发展奠定重要基础，本节将系统梳

理这些核心技术的主流研究方向与实现路径。

3. 1　多源数据融合　

多源数据融合是实现海空 HMAS 协同感知与全局认知的基础。其核心挑战在于智能体传感器模

态多样、时空基准不一致，以及跨域环境下的通信受限等问题。为应对这些挑战，提升系统鲁棒性，需

发展以跨模态统一表征与融合机制为重点的标准化流程（图 7）。该流程始于多源信息采集，经由数据

预处理对齐时空基准、滤除噪声及补偿缺失，通过融合算法实现异构数据的结构化整合，再经融合数据

评估验证结果可靠性，最终形成服务于协同决策的统计态势认知，从而完成从多源感知到全局认知的

转化。表 1 归纳了实现该流程的相关方法。

图 7　多源数据融合流程

Fig.7　Multi-source data fusion process
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3. 1. 1　基于经典概率统计方法的多源数据融合　

基于概率统计的多源数据融合方法，其核心思想是利用概率分布来描述传感器数据的不确定性，

并基于统计准则进行信息整合，以获取更可靠精确的融合结果。针对非高斯噪声导致的估计协方差失

准难题，文献［38］提出了一种基于可信度的融合方法，通过构建信任因子与 J‑S 距离优化模型，提升了

融合系数精度。针对非线性、非高斯系统中容积粒子滤波估计精度不足的情况，文献［39］结合下降梯

度与最大相关熵准则构建了一种自适应滤波融合方法，显著提升状态估计的鲁棒性与实时性。为进一

步平滑计算效率与估计精度，可信高斯和容积卡尔曼滤波研究被提出，该方法通过动态调整高斯分量

与引入自适应容积点策略，在保证精度的同时有效提升了滤波效率［40］。此外，一种结合 D‑S 证据理论

与 K 近邻算法的新型信息融合方法被提出，该方法在分类任务中展现出了显著的应用效果［41］。

3. 1. 2　基于深度学习的多源数据融合　

基于深度学习的多源数据融合方法，其核心思想是利用深度学习等智能算法，自动挖掘异构数据

中的深层特征，实现端到端智能集成。针对无人机平台下可见光‑红外检测面临的劣质输入与特征冗余

挑战，Chen 等［42］提出了一种轻量级网络，通过频域全局优化、动态局部过滤与通道感知融合的协同设

计，实现了鲁棒且高效的特征融合与端到端检测。在地质识别领域，Guo 等［43］通过整合遥感影像、地形

与地质数据，构建了多源特征增强图谱，并基于卷积神经网络实现断层结构的精准智能解译。面向无

人机在无全球导航卫星系统（Global navigation satellite system， GNSS）环境下的跨视角地理定位领域，

文献［44］采用语义感知图卷积网络，并融合图像上下文的语义特征与基于图结构的对象关系信息，能

够在跨视角场景匹配与定位导航任务中取得优异性能。此外，针对海事轨迹预测中动态交互与不确定

性建模问题，文献［45］构建了一种融合大语言模型与自适应图学习、概率‑地理编码的船舶轨迹预测框

架，为复杂场景下的高精度可解释轨迹预测提供了新途径。

3. 1. 3　基于混合方法的多源数据融合　

基于混合方法的多源数据融合，其核心思想在于融合领域知识、物理约束与数据驱动模型的优势。

该架构尤其擅长解决数据稀缺、强物理依赖或高安全性要求的实际难题，能有效弥补纯数据驱动方法

在可解释性、泛化性与鲁棒性方面的不足。针对动态环境下移动机器人定位中的传感器异步与噪声干

扰难题，Huang 等［46］提出了一种扩展卡尔曼滤波与循环神经网络相结合的混合框架，依托统计估计与

时序建模的互补融合，在保证实时性的同时将定位误差控制在 8 cm 以内。为克服多无人机协同感知中

特征融合的盲目性，文献［47］提出了传统协作知识引导的深度学习架构，其利用“群智‑个体差异”的先

验知识与互补性策略指导特征融合，有效提升了协作效率并抑制了特征冗余。为应对目标身份切换挑

战，Meng 等［48］提出的 MPMOT（Motion‑perception multi‑object tracking）框架通过自适应代价矩阵实现

表 1　多源数据融合主流方法优劣及适用场景

Table 1　Advantages and disadvantages of mainstream multi‑source data fusion and their suitable scenarios

方法

基于经典

概率统计

基于深度

学习

基于混合

方法

优势

数学基础坚实，可解释性强，模型

准确时性能最优

模型依赖低，非线性拟合能力强，

可自动学习特征与模式，鲁棒且

自适应

结合经典方法与 AI 优势，兼顾鲁

棒性与适应性，补偿模型误差

不足

依赖精确系统模型，处理非线

性和非高斯问题能力有限，模

型失配性能下降快

需大量训练数据，可解释性差

（黑箱），训练成本高，泛化能

力存疑

系统设计复杂，两种范式有效

结合仍是挑战

适用场景

惯性导航，目标跟踪，控制

系统，稳定工业过程

图像/语音融合，复杂模式

识别，故障诊断，环境感知

高精度定位，复杂工业监

控，资源受限智能感知

引用

文献

[38‑41]

文献

[42‑45]

文献

[46‑49]
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了运动预测与深度学习外观特征的多源信息融合，结合增益卡尔曼滤波的动态调整，提升了跟踪连续

性与身份保持能力。在解决传感器数据的不确定性和冗余方面，基于多神经网络与 D‑S 证据理论的数

据融合模型通过深度组合结构充分感知传感器数据特征，在轴承故障识别中实现了精度突破［49］。

3. 2　通信网络技术　

通信网络是海空 HMAS 实现分布式协同的关键支撑。其核心挑战在于协调无人机与无人船在通信

带宽、协议和时延方面的差异，克服海空

跨域环境中的信道衰减、多径效应及网

络动态变化，以确保数据实时可靠传输。

为应对这些挑战，构建鲁棒低延时的通

信架构，需重点突破跨域自适应组网、智

能资源调度及抗干扰传输等机制，其典

型流程如图 8 所示。该流程始于通信发

现，快速识别可互联的智能体节点；进而

根据任务需求建立并优化通信拓扑；最

终实现高效可靠的协同数据传输。这一

完整链路是支撑系统实时协同决策的基

础。表 2 归纳了实现该流程的相关通信

方法。

3. 2. 1　基于内容优化的通信网络　

基于内容优化的通信网络，其核心思想在于对多智能体交互信息进行价值评估，将通信转化为“信

息提纯‑效能优化”的过程，在降低通信带宽消耗与传输延迟的同时，保障信息准确性与任务相关性。针

对无人机集群在不可靠无线信道下的跟踪误差与通信功耗权衡难题，Tang 等［50］建立了去中心化语义

通信与跟踪控制框架，通过跟踪稳定性约束下的语义化通信决策机制，实现了控制指令的按需触发与

自适应生成，保障跟踪精度，同时显著降低通信能耗。为提升噪声环境下的感知鲁棒性，文献［51］构建

了运动感知鲁棒通信网络，借助多尺度特征融合与运动上下文捕捉，显著增强了系统对位姿噪声和运

动模糊的抵抗能力。针对异构网络环境下的智能通信需求，Liu 等［52］提出了一种基于正交频分复用的

数字语义通信系统，结合语义重要性感知的资源分配机制与动态近端策略优化算法，为复杂信道下的

高效可靠语义传输提供了系统化解决方案。

3. 2. 2　基于连接优化的通信网络　

基于连接优化的通信网络，其核心思想在于通过合理设计与动态调整多智能体间的连接关系，构

图 8　通信网络流程

Fig.8　Communication network process

表 2　通信网络主流方法优劣及适用场景

Table 2　Advantages and disadvantages of mainstream communication networks and their suitable scenarios

方法

基于内容

优化

基于连接

优化

基于任务

优化

优势

显著降低带宽开销，提升传输

效率，增强抗噪声能力

减少通信延迟，提升网络可扩

展性，适应动态环境变化

实现任务‑通信联合优化，提升

系统整体效能和可靠性

不足

依赖特征提取模型，可

能丢失细节

系统设计复杂，协议开

销大

跨层设计复杂，优化难

度高

适用场景

协同感知、实时视频分析、带宽

受限环境

大规模智能体系统、时变网络

环境

资源受限场景、高可靠要求的

协同决策任务

引用

文献

[50‑52]
文献

[53‑56]
文献

[57‑59]
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建高效通信链路，在降低通信开销的同时增强系统扩展性与场景适应性。针对大语言模型多智能体系

统中通信拓扑选择困难的问题，Zhang 等［53］提出了一种自适应解决方案，通过变分图自编码器动态生成

任务自适应的通信拓扑，在保证性能的同时大幅度降低通信所需令牌消耗。在多智能体辩论框架中，

文献［54］建立的稀疏通信拓扑被证明能实现与全连接相当甚至更优的性能，同时显著降低计算成本，

为“心智社会”方法提供了高效实现路径。为克服物联网拓扑强化学习中的局部最优与收敛速度问题，

Qiu 等［55］提出了一种基于进化多智能体的物联网拓扑自适应鲁棒性优化方法，依托非确定性策略实现

多方向探索，显著提升了收敛效率与拓扑鲁棒性。此外，在通信范围受限的动态场景中，AC2C 协议通

过自适应两跳通信机制，实现了远程信息的高效交互与通信开销的平衡［56］。

3. 2. 3　基于任务优化的通信网络　

基于任务优化的通信网络，其核心思想是以任务需求为导向，通过动态调整通信链路与资源分配，

实现网络结构与任务目标的高度协同，从而提升整体系统效能。针对海上无人机在资源受限下面临的

目标跟踪与图像处理协同优化难题，Wang 等［57］提出了两阶段联合优化框架，设计了在线资源分配算法

与神经网络跟踪策略，在保证高跟踪成功率的同时，显著降低了系统总能耗，并兼顾了数据处理精度与

稳定性。面向任务驱动的无人机网络频谱资源分配问题，文献［58］开展了基于博弈论的优化框架研

究，该框架通过任务分解与特征需求分析，构建了适应不同任务类型的频谱分配机制。进一步地，在飞

行自组网应用场景中，基于任务协同的组网框架融合多智能体强化学习与分布式协作机制，使无人机

能够依据历史及邻居状态信息交互实现轨迹、频谱与路由的联合智能决策，展现出良好的动态适应性

与网络可扩展性［59］。

3. 3　任务分配技术　

任务分配是海空 HMAS 中实现宏观任务高效协同的决策中枢。其核心挑战在于智能体功能与载

荷资源上存在本质差异，需协调多任务间复杂的优先级、时序和资源耦合关系，并应对动态环境带来的

不确定性。为应对这些挑战，提升系统整体效能，需重点发展异构平台的多约束任务建模、动态可扩展

调度及分布式抗干扰决策机制，其典型执行流程如图 9 所示。该流程始于任务分析，明确任务的要求；

进而对系统中各智能体的能力进行评估；最终通过相关算法为不同任务分配合适的智能体，实现全局

效能最优。这一闭环过程是系统在动态环境下保持协同性与适应性的关键。表 3 归纳了实现该流程的

相关方法。

图 9　任务分配流程

Fig.9　Task allocation process
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3. 3. 1　基于市场机制的任务分配　

基于市场机制的任务分配方法，其核心思想是将任务分配过程建模为市场竞争行为，通过竞价、拍

卖等机制实现资源的高效配置，以达成系统全局效能最优。针对复杂环境下多无人机联合任务分配问

题，Liu 等［60］提出扩展市场机制方法，结合 Dubins 路径与 B 样条优化，设计多层投标与冲突解决机制，实

现了异构无人机在障碍环境中的协同任务高效分配与轨迹生成。为平衡计算复杂度与分配性能之间

的矛盾，Wang 等［61］提出一种基于共识的自适应优化拍卖算法，借助优化价格更新机制中的关键参数，

在保证系统收益的同时显著降低了计算负载。面向海上作战中无人机集群协同打击任务，文献［62］开

展了两阶段贪婪拍卖算法研究，利用熵权法评估任务优势并设计了重分配机制，有效实现了大规模集

群任务的快速分配。在多机器人包裹投递方面，基于分组的分布式拍卖算法通过协调机器人分布式计

算与通信，在满足时间窗约束的同时有效降低了总行驶时间［63］。

3. 3. 2　基于群体智能的任务分配　

基于群体智能的任务分配方法，其核心思想是通过模拟自然界生物群体的协作机制，利用种群间

信息共享与分布式决策实现复杂环境下多智能体任务的协同优化。针对复杂山区环境下输电线路多

无人机巡检任务，Li 等［64］提出了改进的双向蚁群与离散蜜獾混合算法，所建立的考虑风场影响的多指

标混合成本函数，显著提升了任务分配的求解效率与优化稳定性。面向战场环境中不确定协同任务分

配问题，文献［65］建立了一种考虑期望收益与稳定性的不确定多目标模型，并采用改进离散粒子群算

法进行求解，有效处理了样本不足导致的不确定性建模难题。为提升震后救援任务分配效率，粒子群

优化与灰狼优化器的混合算法引入了区间变换和非线性收敛因子等策略，实现了救援成本与时间周期

的协同优化［66］。此外，在异构无人机协同作战场景下，Chen 等［67］开发的多目标蚁群算法设计了新的信

息素更新机制与启发式信息，在收敛速度、解质量和解多样性方面表现优异。

3. 3. 3　基于博弈理论的任务分配　

基于博弈理论的任务分配方法，其核心思想是将多智能体系统中的任务分配过程建模为博弈参与

者之间的策略互动过程，通过寻求纳什均衡等稳定解来实现系统整体效能优化。针对空间众包中需要

多工作者协同完成的任务分配问题，Zhao 等［68］提出了基于联盟的博弈方法，结合模拟退火方案优化纳

什均衡求解，在保证分配公平性的同时实现了整体奖励最大化。面向多水下机器人协同作战的动态任

务分配需求，文献［69］建立了非零和博弈模型，通过层次分析法的多目标评估体系和改进粒子群算法

有效地提升了系统效能和决策实时性。Zhang 等［70］将进化博弈理论引入任务分配，并设计了基于收益

表 3　任务分配主流方法优劣及适用场景

Table 3　Advantages and disadvantages of mainstream task allocation methods and their suitable scenarios

方法

基于市场

机制

基于群体

智能

基于博弈

理论

基于深度

学习

优势

分布式决策，实时响应，局部通

信协商

全局搜索，目标函数灵活，适合

分布式

处理竞争与合作关系，适合分

布式

动态决策，数据驱动提取模式，

多方法互补

不足

全局性差，易局部最优，存在任

务竞争

易局部最优，依赖调参，大规模

迭代耗时

计算复杂，假设有局限，动态适

应性不足

需足量样本，对缺失数据敏感，

可解释性弱

适用场景

小规模，资源受限场景

静态优化，多目标权衡

利益冲突，长期合作场景

复杂动态场景，跨域多智

能体协同

引用

文献

[60‑63]
文献

[64‑67]
文献

[68‑70]
文献

[71‑74]
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的时变对数线性学习算法，从理论上证明了该算法能够以概率 1 收敛至最优纳什均衡。

3. 3. 4　基于深度学习的任务分配　

基于深度学习的任务分配方法，其核心思想是通过智能算法自主学习任务特征与环境约束，实现

多智能体系统中任务的高效和自适应分配。针对复杂约束下异构无人机集群动态任务分配问题，Liu
等［71］提出共识分组捆绑算法，通过时间槽优化与区块信息共享策略，解决了通信受限与多机协同的资

源需求冲突，实现了动态环境下任务高效分配。在多无人机协同多目标打击场景中，Guo 等［72］基于图

神经网络与注意力机制建立了深度强化学习任务分配方法，通过构建图嵌入与分布式策略网络，实现

对可变数量目标节点的泛化分配，并结合采样策略批量训练提升算法效率与稳定性。为提升 GNSS 拒

止环境下多无人机协同搜救的任务自主性，文献［73］采用图注意力网络与深度强化学习相结合的方

法，创新性地设计了人工势场奖励结构与深度相机辅助的 LIDAR‑SLAM（Light detection and ranging 
simultaneous and mapping）高度校正机制。此外，针对低空无人机救援中动态、异构环境下的协同任务

分配问题，Tang 等［74］将匈牙利算法与基于生成扩散模型的多智能体深度确定性策略梯度方法相结合，

在确保系统长期队列稳定的同时，实现了对任务卸载匹配与计算资源分配的联合优化。

3. 4　路径规划技术　

路径规划是海空 HMAS 中生成安全高效运动轨迹的核心技术。其核心挑战在于协调海空平台动

力学差异、克服环境动态扰动并满足避碰约束。为此，需重点发展高鲁棒自适应的协同规划算法，以实

现系统整体稳定的综合优化，其典型规划流程如图 10 所示。该流程始于初始条件获取，明确任务需求

与约束条件；继而通过全局规划生成满足宏观任务需求的可行路径；然后，利用局部规划实时局部避

障；最终通过集群路径调整优化整体路径，形成安全准时的集群运动方案。这一闭环流程是保障异构

系统在动态环境中高效、可靠运行的关键。表 4 归纳了相关规划方法。

3. 4. 1　基于采样的路径规划　

基于采样的路径规划方法，其核心思想是通过在构型空间中随机采样并构建搜索树来快速探索可

行路径，特别适合解决高维空间中的运动规划问题。针对 RRT*（Rapidly‑exploring random trees star）算

法中探索与利用难平衡的问题，Ganesan 等［75］提出了 Hybrid‑RRT*算法，通过融合均匀与非均匀采样策

略，在保证路径质量的同时将收敛速度大幅提升。不同于传统方法对最优路径成本的侧重，Huang

图 10　路径规划流程

Fig.10　Path planning process
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等［76］致力于减少初始解获取时间，提出了动态梯度采样 RRT 算法，该方法利用梯度采样策略和路径重

构机制显著减少了规划时间并优化了路径成本。面向复杂障碍环境下的测量机器人路径规划，文献

［77］提出了方向引导 RRT 算法，该方法引入了方向指引策略与线性简化处理，有效减低了规划时间与

平均路径长度。此外，针对 RRT*收敛速度慢和搜索随机性强的问题，改进 A‑RRT*算法通过结合变概

率目标偏置策略与改进人工势场法，提升了方向搜索能力与路径质量［78］。

3. 4. 2　基于图搜索的路径规划　

基于图搜索的路径规划方法，其核心思想是将环境抽象为图结构，通过遍历节点来寻找最优或次

优路径。针对传统 A*算法冗余节点多、搜索效率低的问题，Xu 等［79］设计了一种引入矩形边界搜索和自

适应代价函数的改进算法，显著降低了搜索时间和转弯角度。面向大型室内杂乱环境的路径规划挑

战，Meysami 等［80］提出一种基于三角形与四边形混合单元的地图表示方法，该方法可自适应地选择最

优地图表示形式，在路径长度与安全性之间实现了更好的平衡。为解决多目标路径规划中的节点访问

顺序优化难题，文献［81］建立了一种“一距离‑两角度”排序范式，该范式结合改进的 A*算法显著地降低

了计算复杂度，并在多场景测试中展现出优越性能。此外，通过构建融合方向性风险编码的图结构与

波前式分层管理机制，文献［82］在非结构化环境中将路径平均风险权重降低 59.2% 的同时，实现了实

时高效的安全导航。

3. 4. 3　基于人工势场的路径规划　

基于人工势场的路径规划方法，其核心思想是通过构建目标点的引力场和障碍物的斥力场，引导

移动机器人在势场力的作用下沿势能下降方向规划安全路径。针对 RRT*算法收敛速度慢和初始路径

生成效率低的问题，Feng 等［83］提出了方向偏置变步长 APF‑RRT*算法，依托于方向采样策略与人工势

场法，在提升初始路径搜索速度的同时增强了避障能力。在机械臂窄空间作业场景下，文献［84］提出

了基于力传感信息的三维人工势场方法，通过设计旋转斥力场方向策略，使机械臂能够成功穿越重叠

斥力场的狭窄通道并有效避免局部极小值。为进一步提升路径规划的成功率与稳定性，Cao 等［85］将确

定性退火策略引入势场函数优化，借助温度参数的动态调节避免了陷入局部极小，在包含凸与非凸障

碍物的复杂环境中展现出更优适应性。

3. 4. 4　基于群体智能的路径规划　

基于群体智能的路径规划方法，核心思想是通过模拟自然界生物群体的协作机制，利用种群间信

息共享与分布式决策在复杂环境中寻找最优或次优路径。针对传统遗传算法在种群初始化和解质量

方面的不足，Wahab 等［86］提出了基于线性排序与间隙概率道路图的改进遗传算法，通过新型初始化策

表 4　路径规划主流方法优劣及适用场景

Table 4　Advantages and disadvantages of mainstream path planning methods and their suitable scenarios

方法

基于采样方法

基于图搜索

基于人工势场

基于群体智能优化

基于深度学习

优势

可渐近逼近最优

适合离散环境

实时性好

多目标优化，全局

搜索强

适应未知环境

不足

路径质量差，收敛慢，稳定性

不足

高维计算量大，更新慢

易局部极小，路径抖动

计算慢，参数敏感

需大量数据，泛化性有限

适用场景

高维复杂环境

静态离散环境

简单动态环境

离线全局规划、多智能

体协同

动态未知环境

引用

文献[75‑78]

文献[79‑82]
文献[83‑85]

文献[86‑89]

文献[90‑93]
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略和遗传算子组合，显著减少了不可行路径数量并提升了路径质量。面向多目标路径规划问题，文献

［87］提出了改进非支配排序遗传算法，该算法采用混合初始化策略和自适应变邻域搜索，在路径长度、

安全性与平滑度等多目标间实现了有效平衡。在类车移动机器人的路径规划中，分数阶蚁群优化方法

通过引入动态角度约束和自适应信息素调整，有效解决了狭窄空间易陷入局部最优和大规模场景搜索

效率低的问题［88］。此外，Yildirim 等［89］提出的改进人工蜂群算法在栅格环境中的路径长度优化幅度最

高达到 37%，显著提升了算法的收敛速度与全局搜索能力。

3. 4. 5　基于深度学习的路径规划　

基于深度学习的路径规划方法，其核心思想是通过数据驱动的学习机制，使机器能够从环境交互

中自主获取决策能力，实现复杂场景下的智能导航。针对室内环境中盲区探索效率低的问题，Zhou
等［90］提出了基于双深度 Q 网络的方法，结合阻塞盲区角度机制，在提升覆盖率 11.37% 的同时将训练时

间减少。在自主叉车能耗优化方面，Mohammadpour 等［91］提出深度神经网络与动力学模型的协同策

略，通过构建能耗优化数据集和训练加速度预测模型，生成了兼具运动可行性与能耗最优的轨迹。面

向跨区域路径规划，文献［92］改进的 Q 学习算法利用模拟退火机制动态调整探索因子，并引入欧氏距

离作为启发信息，在复杂路况下显著提升了搜索效率和收敛速度。此外，Zhao 等［93］提出了一种结合卷

积神经网络模式预测与精英 Q 学习的路径规划方法，借助动态奖励机制实现空地模式自适应切换，在

保证路径最短的同时显著提升了学习效率和收敛速度。

3. 5　编队控制技术　

编队控制是海空 HMAS 中维持协同运动与队形一致性的关键技术。其核心挑战在于协调海空平

台在动力学与控制精度上的差异，满足空间与时域上的多维构型约束，并克服动态环境的未知干扰。

为应对这些挑战，提升系统的构型保持与协同效能，需重点发展跨平台自适应控制与强鲁棒协同机制，

其典型执行流程如图 11 所示。该流程始于期望队形获取与角色分配，进而通过多智能体状态感知实时

获取位置与环境信息，再利用编队控制算法生成分布式指令，最终驱动集群形成并保持期望队形，实现

在扰动下的稳定协同。该闭环流程是系统实现高精度、强鲁棒协同作业的基础。表 5 归纳了实现该流

程的相关方法。

图 11　编队控制流程

Fig.11　Formation control process
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3. 5. 1　基于领队‑跟随控制的编队控制　

基于领队‑跟随者的编队控制方法，其核心思想是设计领队智能体运动轨迹与跟随者间协同策略，

实现多智能体系统稳定编队运动。Xia 等［94］针对执行器故障与外部扰动下网络化无人机的编队跟踪控

制问题，提出级联估计器分布式容错控制策略，通过非线性变换约束姿态，在完全分布式框架下精准补

偿复合动态不确定性，保障系统渐近稳定与编队收敛。为实现固定翼无人机编队队形的连续机动变

换，文献［95］开展了基于四元数的有限时间分布式观测器研究，该方法结合自适应有限时间扰动观测

器，实现对队形方位约束变形的高精度补偿。面向存在输入饱和与未知动态的水面舰艇编队控制，

Yang 等［96］设计了分布式预设时间观测器与降阶估计器，保证系统在预设时间内实现稳定暂态性能与

队形跟踪。此外，文献［97］集成事件触发机制与分布式观测器，所提控制架构在欠驱动无人艇系统中

实现编队跟踪与镇定，大幅降低通信及执行器更新频率。

3. 5. 2　基于虚拟结构的编队控制　

基于虚拟结构的编队控制方法，其核心思想是通过构建虚拟领航者或几何结构为智能体群提供统

一运动参考，从而实现整体队形的精确保持与协同机动。针对无人机群在复杂环境中自主队形重构与

安全避障的需求，Liao 等［98］提出了自适应感知柯西变异鸽群优化算法，通过结合变步长模型预测控制

技术，实现了对避障、防撞及队形保持目标函数的协同优化。针对无人机编队在复杂任务中的适应性

局限，文献［99］提出虚拟结构引导的分布式强化学习方法，结合软性演员‑评论家算法构建多子模型框

架，通过环境触发动态切换，显著增强了编队自适应能力与任务成功率。为适应动态火灾蔓延等极端

场景，Rao 等［100］提出基于元胞自动机的规则虚拟管生成方法，该方法构建前后端优化框架，为无人机群

提供了可适应动态环境的安全飞行走廊。此外，针对未知扰动下无人艇编队轨迹跟踪问题，有限时间

扰动观测器最优反步控制方法通过实时扰动补偿与最优轨迹动态优化，显著提高编队系统的跟踪

精度［101］。

3. 5. 3　基于行为控制的编队控制　

基于行为控制的编队控制方法，其核心思想是通过设计个体间的局部交互规则与自主决策行为，

使智能体群在无需全局信息的情况下自组织地形成并维持期望队形。针对无人机群在动态对抗环境

表 5　编队控制主流方法优劣及适用场景

Table 5　Advantages and disadvantages of mainstream formation control methods and their suitable scenarios

方法

领队‑跟随控

制法

虚拟结构法

行为控制法

一致性编队

控制

基于优化

编队控制

强化学习

编队控制

图神经网络

编队控制

优势

原理简单，计算量小

队形保持精度高

分布式，适应动态环境

分布式鲁棒强，拓扑灵活

约束处理能力强

适应动态扰动

适配异构系统，拓扑自适

应强

不足

存在单点故障，环境适应性弱

计算复杂，适应性弱

规则依赖经验，易震荡

对模型差异敏感，收敛受通信

影响

对模型差异敏感，计算负担大

需大量训练数据，迁移难，可

解释差

训练成本高，小规模易过拟合

适用场景

静态中小规模编队

需结合其他算法使用

动态开放场景

大规模分布式集群

约束复杂场景

多扰动环境编队

异构跨域协同编队

引用

文献[94‑97]

文献[98‑101]
文献[102‑105]

文献[106‑109]

文献[110‑112]

文献[113‑117]

文献[118‑120]
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中围捕移动目标的需求，Wen 等［102］提出了分布式协同围捕控制策略，依托于分布式位置观测器与自行

为规则，实现了无预设队形的目标包围与防撞控制。为提升无人机集群在三维约束环境下的协调控制

能力，文献［103］提出了一种基于优先级零空间行为的混合控制架构，通过融合势场导航、虚拟网格队

形保持与动态优先级分配，有效解决了多行为任务冲突并确保了系统的可扩展性。面向障碍环境下的

围捕控制，Yu 等［104］开发了基于势函数和自组织理论的分布式控制器。该控制器能够在保持通信连通

性的同时，协同估计目标的运动状态。此外，通过引入基于几何策略与冲突度优化的行为融合方法，高

速固定翼无人机集群在虚拟管道约束与局部通信条件下，实现了兼具边界保持、中心线跟踪与实时碰

撞规避的安全穿越［105］。

3. 5. 4　基于一致性编队的编队控制　

基于一致性理论的编队控制方法，其核心思想是通过设计分布式协同协议，使多智能体系统在局

部信息交互下达成状态一致，从而实现稳定的队形生成与保持。针对无人机编队避障过程中的局部最

优与收敛性能问题，Zhang 等［106］提出了一种结合人工势场与粒子群优化的共识控制算法，该算法通过

引入共线力偏转角和虚拟力场方法，有效提升了避障成功率与编队收敛速度。为平衡编队避障的灵活

性与一致性，文献［107］研究了基于强化学习的差异化编队控制方法，该方法利用共识机制实现策略动

态切换，并结合协同避障算法以维持编队整体一致性。针对通信拓扑动态变化与外部干扰，Xiao 等［108］

提出三维自触发自组织拓扑的无人机集群一致性系统，融合分布式扩张状态观测器提升鲁棒性，借助

一致性机制实现状态同步与编队保持，有效解决单元故障下的编队重构难题。此外，针对四旋翼无人

机系统的欠驱动特性，障碍李雅普诺夫函数被应用于编队跟踪控制，通过分层控制架构在保证预定精

度的同时实现了分布式算法的渐近收敛［109］。

3. 5. 5　基于优化的编队控制　

基于优化的编队控制方法，其核心思想是将编队任务转化为带约束优化问题，求解最优控制输入，

实现多智能体约束下性能最优与协同构型保持、动态调整。针对集群协同评估与避障权重权衡问题，

Yang 等［110］提出了一种同步分布式模型预测控制与多维评估框架，实现了基于评估反馈的避障权重闭

环优化，在绝对安全下显著提升了编队保持与通信均衡等综合性能。文献［111］结合编队控制与无人

机协同降落开展了高精度终端协同控制研究，利用基于高斯过程学习的分布式模型预测控制框架，提

高了编队协同降落的成功率与安全性。此外，在传感器故障与输入饱和的多无人艇协同编队控制方

面，Song 等［112］提出一种自适应模糊预定义时间最优控制方法，通过改进性能函数与饱和补偿，使编队

误差在预设时间内收敛于可调包络。

3. 5. 6　基于强化学习的编队控制　

基于强化学习的编队控制方法，其核心思想是通过智能体与环境的持续交互自主学习最优协同策

略，实现多智能体系统的分布式决策与自适应协调。针对虚假数据注入攻击下的多无人水面艇协同问

题，Wang 等［113］设计了基于自适应动态规划与动态事件触发的围捕控制器，利用预定时间观测器补偿

攻击，实现了具有预定性能的强化学习最优控制。为克服复杂环境下小型固定翼无人机编队控制难

题，文献［114］开发了人工势场‑深度确定性梯度与共识理论结合的混合框架，结合领导者深度强化学习

与跟随者人工势场协同机制，实现了多队形鲁棒飞行与动态避障。面向复杂环境目标围捕任务，Wei
等［115］提出一种基于多头软注意力的目标一致性强化学习方法，依托认知失调损失提升样本利用率，显

著提高了任务成功率。在多水面舰艇编队控制中，分层架构将位移编队控制与强化学习最优控制相结

合，并利用李雅普诺夫方法证明了系统稳定性［116］。此外，针对规定时间最优编队控制问题，Zhao 等［117］

构建了有限时间成本函数，结合演员‑批评家强化学习与规定时间调整机制，实现了未知系统模型下的

渐近收敛与最优性能。
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3. 5. 7　基于图神经网络的编队控制　

基于图神经网络的编队控制方法，其核心思想是将多智能体系统建模为图结构，挖掘智能体间的

拓扑关系，实现分布式协同决策。针对大规模无人机群协同运动中的拓扑识别与局部信息获取难题，

Zhao 等［118］提出基于图嵌入与注意力机制的方法，通过图神经网络识别运动拓扑，并结合多智能体强化

学习自主生成协同避障策略。为克服传统感知‑控制分离架构的延迟与误差问题，Jiang 等［119］提出端到

端学习方法，以激光雷达数据为输入，借助图神经网络建模机器人间通信，实现了可扩展的分布式编队

控制。面向动态对抗环境中的多无人机编队韧性保持挑战，文献［120］开发了基于图注意力网络的双

模控制策略，结合深度强化学习训练，在维持编队紧密性的同时有效抵御拒绝服务攻击。

4 HMAS的应用现状与工程化挑战  

海空 HMAS 凭借其海空协同、能力互补的独特优势，已从理论研究与原型验证逐步走向特定场景

的初步应用，在多个领域展现出传统单一平台或同构系统难以比拟的整体效能。在海洋环境监测与测

绘方面，通过无人机广域快速感知与无人船定点精细采样相结合，实现了水文、生态、气象等数据海空

海一体化采集与实时回传，显著提升了海洋环境数据的获取效率、空间覆盖范围与时空分辨率。在海

上搜救与应急响应任务中，系统利用无人机快速定位落水目标或事故区域，并引导无人船抵近实施救

援或物资投送，形成“侦‑探‑控‑救”闭环，大幅提高了搜救响应速度、目标识别精度与任务成功率。在关

键基础设施巡检领域，如海上风电平台、跨海桥梁及海底电缆等，通过异构图与多视角数据融合，实现

了对结构缺陷、设备状态与环境风险的智能识别与预警，提升了巡检作业的安全性、自动化水平与监测

准确性。在军事安防与战场支援场景下，可系统构建侦察‑干扰‑打击‑评估一体化的跨域协同链路，通

过无人机前沿侦察、无人船抵近监视与协同电子对抗，强化了对复杂战场态势的感知能力与动态应对

能力，已成为智能无人作战体系中不可或缺的重要组成部分。

尽管 HMAS 在诸多场景中展现出巨大潜力，但其从仿真实验走向规模化、高可靠工程应用仍面临

一系列系统性挑战。首先，系统集成复杂度高，无人机、无人船等异构平台在通信协议、数据格式、时空

基准与控制接口上缺乏统一标准，导致多源异构系统往往“联而不通、通而不融”，难以实现真正的信息

共享与协同决策。其次，真实海洋环境适应性严重不足，现有算法多基于理想假设设计，在复杂电磁干

扰、高湿盐雾、多变海况与强风浪扰动下，传感器性能退化、通信链路中断、控制精度下降等问题频发，

系统动态协同的可靠性显著降低。再次，可靠性保障与安全认证体系缺失，目前缺乏针对跨域无人系

统的测试标准、评估方法与认证规范，在功能安全、信息安全、任务可靠性以及人机共融安全等方面存

在明显短板，制约其在关键任务中的部署与应用。最后，成本与可扩展性矛盾突出，当前系统多采用定

制化软硬件开发，集成与维护成本高昂，且缺乏柔性可重构的体系架构，难以支持大规模集群扩展与多

样应用场景的快速迁移，制约了其商业化与规模化推广。这些挑战共同构成了 HMAS 从“实验室原型”

走向“工程化产品”必须跨越的鸿沟。

为应对上述工程化挑战，未来研究需重点突破以下几个关键技术方向。在跨平台一体化集成技术

方面，应着力研发跨域通信中间件、统一时空基准与数据模型、开放式软件架构及模块化硬件接口，实

现异构平台的即插即用与快速组网。在恶劣环境下抗干扰协同技术方面，需发展环境自适应感知融合

算法、强鲁棒协同决策框架、容错与重构控制策略，并探索智能通信资源调度与抗干扰传输机制，以提

升系统在复杂动态环境中的协同稳定性。在测试评估与标准规范体系建设方面，应构建覆盖全链路的

半物理仿真平台、外场试验验证环境与多维性能评估指标体系，推动制定跨域无人系统通信协议、数据
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交互、安全测试等行业或国家标准，为系统认证与应用准入提供依据。在低成本可扩展架构设计方面，

需研究基于云边端协同的计算卸载与任务调度方法、群体智能自组织协同机制、软硬件解耦与组件复

用技术，以及开源协同框架与工具链，以降低系统开发与部署成本，支撑大规模集群应用与功能快速

迭代。

5 总结与展望  

本文围绕海空 HMAS 展开系统性综述。首先明确了其“硬件异配、功能互补、动力学差异化”的核

心内涵，并深入阐释了感知‑信息协同、任务‑决策协同、行为‑运动协同 3 类核心范式。进而从系统功能

链视角出发，剖析了由规模效应与异构效应耦合引发的全链路挑战，包括通信拓扑可扩展性障碍、决策

计算爆炸、统一态势认知构建困难、异构目标协调困境以及通信与动力学壁垒等关键问题。在此基础

上，系统梳理了多源数据融合、通信网络、任务分配、路径规划与编队控制 5 个关键技术的主流方法与发

展趋势，通过对比分析各类方法的优势、局限及适用场景，为技术选型与集成提供了参考。最后，结合

典型应用案例，总结了 HMAS 在海洋环境监测、海上搜救等领域的应用现状，并指出了当前面临的集成

复杂度高、环境适应性不足、安全认证缺失及成本可扩展性差等工程化瓶颈。

展望未来，海空异构多智能体系统的研究应遵循“理论‑技术‑工程‑应用”协同推进的路径，以提升

系统整体性能与成熟度。在理论层面，需构建“感知‑决策‑控制”全链路协同的统一建模与优化框架，发

展适应大规模异构群体的分布式协同理论、跨层级耦合分析与性能边界刻画方法。在技术层面，应重

点突破智能感知融合、自主协同决策和强鲁棒协同控制等核心瓶颈，发展轻量化、自适应、可解释的协

同算法，并注重通信‑计算‑控制资源的协同调度与优化。在工程层面，需大力推进模块化、标准化集成

技术，发展高可靠、低成本的系统架构，并建立完善的测试评估与安全认证体系。在应用层面，可进一

步拓展“空‑海‑潜”三维跨域协同、人机混合增强智能、集群自主涌现等新型应用模式，并通过开源生态

与平台化建设降低技术门槛，推动 HMAS 在海洋开发、智慧城市、应急安全等民用领域的规模化应用。

通过多学科交叉与产学研深度融合，有望推动海空 HMAS 向更高智能、更强鲁棒、更广应用的方向发

展，为构建未来智能无人系统生态奠定坚实基础。
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A Survey on Full‑Chain Cooperative Technology for Sea‑Air Heterogeneous Multi‑
agent Systems

GE　Quanbo1，2，3，4*， LI　Kai1， LU　Zhenyu1， LI　Bo5，6， YANG　Liang5，6， HUANG　Yanjun7

(1. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. Jiangsu 
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China; 3. Jiangsu 
Provincial University Key Laboratory of Big Data Analysis and Intelligent Systems, Nanjing 210044, China; 4. Shenzhen Research 
Institute of Big Data, Shenzhen 518038, China; 5. Jiangsu Provincial Intelligent Low‑Altitude Flight Management and Service 
Laboratory, Nanjing 210044, China; 6. Nanjing Les Information Technology Co., Ltd, Nanjing 210014, China; 7. School of 
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Abstract： This paper aims to systematically review the research progress in cooperative technologies for 
sea-air heterogeneous multi-agent systems， clarify their core cooperative paradigms， and reveal the 
systemic challenges arising from the tight coupling of the “perception， decision-making， and control” full 
chain. Adopting a system-level functional perspective， the research analyzes the full-chain challenges 
induced by scale effects and heterogeneity effects， such as system scalability， dynamic matching， and 
overall robustness. Subsequently， it conducts a review and comparative analysis of the mainstream 
methods for five key technologies underpinning system cooperation—multi-source data fusion， 
communication networks， task allocation， path planning， and formation control， evaluating their 
advantages， limitations， and applicable scenarios. Analysis indicates that while such systems show 
significant potential in tasks like maritime search and rescue and wide-area inspection， their transition to 
practical engineering applications remains constrained by bottlenecks such as cross-platform integration 
difficulties， insufficient adaptability to dynamic environments， and a lack of testing and evaluation 
frameworks. Future efforts should focus on making sustained breakthroughs in areas such as full-chain 
cooperative theory modeling， lightweight intelligent algorithms， and standardized engineering 
architectures， while also exploring new cross-domain cooperative paradigms， to promote the development 
of marine-aerial heterogeneous multi-agent systems towards greater intelligence， enhanced robustness， and 
broader application.
Highlights:
1. Shifting from the analysis of isolated technical points to a full-chain coupling perspective of “perception, 
decision-making, and control”, this work systematically elaborates the core concepts and inherent 
challenges of cooperation in heterogeneous multi-agent systems.
2. It delves into the root scientific problems that complicate system coordination from the two dimensions of 

“scale effects” and “heterogeneity effects”.
3. While summarizing typical application scenarios, it clearly identifies the core gaps that must be bridged 
in the transition from “laboratory prototypes” to “engineered products” and points out explicit directions for 
future research.
Key words： heterogeneous multi-agent systems; cooperative mechanisms; cooperative paradigm; sea-air 
coordination; full-chain challenge
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