星座旋转映射的二维信息传输方法

刘 芳,陈立志,牟 琳,冯永新

(沈阳理工大学信息科学与工程学院,沈阳 110159)

摘 要:为增加直接序列扩频(Direct sequence spread spectrum,DSSS)系统每秒传输二进制信息的位数,增强信息传输的保密性,建立映射传输机制,提出星座旋转映射的二维信息映射传输方法。在传输一维信息的同时,附加二维信息,利用进制转换与星座图的旋转建立关系模型。通过一维信息与二维信息的传输速率之比选定星座图,进而通过星座旋转映射将二维信息转换为映射信息,获得相应的伪码通道,传输一维信息,同时对二维信息进行映射传输。通过仿真平台测试分析表明,星座旋转映射的二维直扩传输方法与传统直接序列扩频系统相比,能够获得更高的信息传输速率,具有更好的误码性能,能够满足更好保密性能的需求。

关键词:直接序列扩频;进制转换;星座旋转映射;二维信息;动态选码
 中图分类号:TN914
 文献标志码:A

Two-Dimensional Data Transmission Method with Constellation Rotation Mapping

LIU Fang, CHEN Lizhi, MU Lin, FENG Yongxin

(School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China)

Abstract: In order to increase the bits of binary data transmitted per second in direct sequence spread spectrum (DSSS) systems and enhance the security of information transmission, a mapping transmission mechanism is established, and a two-dimensional data transmission method with constellation rotation mapping is proposed. As the one-dimensional data is transmitted, the two-dimensional data is added, and the relationship model is established by using the M-ary conversion and constellation rotation. The constellation is selected according to the ratio between one-dimensional data rate and two-dimensional data rate, and then the two-dimensional data is converted into mapping data by constellation rotation mapping, so as to obtain the corresponding pseudo-code channel and achieve the transmission of one-dimensional data and the mapping transmission of two-dimensional data. The simulation results show that compared with the traditional DSSS system, the two-dimensional data transmission method with constellation rotation mapping can obtain higher data transmission rate and better error code rate performance, as well as meet the requirements of better confidentiality performance.

Key words: direct sequence spread spectrum(DSSS); binary conversion; constellation rotation mapping; two dimensional data; dynamic choose code

引 言

扩频通信通过扩展信号带宽从而获得低信噪比,进而在扩频伪码未知的情况下难以截获。在扩频 通信领域中,直接序列扩频(Direct sequence spread spectrum,DSSS)通信技术更是扩频通信方式中的重 要研究内容,凭借保密性能好^[1]、抗干扰性强^[2]和抗截获性强^[3]的性能优势被应用在通信领域的各个方 面,例如水声通信^[4]、卫星导航信号^[5]等。而且直扩系统也开始被应用在其他领域中,例如超声目标检 测^[6]、反孤岛系统^[7]等。

为实现信息的可靠性传输,更好的抗干扰性能^[8-10]作为一个研究热点逐渐受到广泛关注。近年来 为了降低直扩系统的截获率,对扩频码^[11-14]与解扩算法^[15-16]进行了一系列的改进。目前如何获得更高 的传输性能逐渐成为人们关注的焦点。

当信息传输量很大时,扩频的传输速率不够,保密性较低,误码率高,针对这类问题出现了很多的 解决方法,例如多路超宽带技术^[17-18]、复用技术^[19-20]、码索引调制^[21]、并行组合^[22]等,文献[17-18]中为了 获得更好的传输特性采用了超宽带技术,文献[19-20]中利用多路复用技术,提高了数据链路利用率,进 而获得了较好的信息传输速率等。但是上述方法的传输速率仍旧受限,因此,在直扩系统的基础上做 了一些改进以获得更优秀的传输特性。其中调制方式仍然采用二进制相移键控的调制方式^[23-24]。

由于存在带宽限制,针对直接序列扩频系统的传输速率以及保密性,本文提出了一种星座旋转映射的二维信息映射传输方法(Two dimensional data transmission method based on constellation rotation mapping,2D-CRM)。该方法在传输一维信息的同时,对二维信息进行映射传输,从而达到更快的信息传输速率,并且通过星座图,将二维信息转换为映射信息,采取相应的扩频伪码,从而使得系统具有更好的保密特性。

1 传输方法原理

1.1 发送端原理

2D-CRM的原理为待发送两组信息,分别命名为一维信息和二维信息。首先,将二维信息分组,从 而利用星座旋转将其变换成映射信息,进而利用Gold码机制构建伪码集合,并利用进制转换从伪码集 合中选择扩频伪码序列对一维信息的每个码元分别进行扩频处理,完成传输一维和二维信息的任务。

图 1 为 2D-CRM 发送端原理图,在发送端的两组待传输信息分别为:一维信息 $d_1(n)$;二维信息 $d_2(n)$ 。其中,一维信息的传输速率为 R_1 ,二维信息的传输速率为 R_2 ,单位为b/s。并根据 R_2 与 R_1 的比 值构建比值参数x。

由于两组信息的传输速率并不一定为理想状态,即二维信息与一维信息的传输速率之比不一定为 整数时,引入动态因子ω,此时ω值大于零,使得R₂与R₁之比和ω做相加运算后可得到改进的整数型比 值参数x。当R₂与R₁之比为整数,即ω的值等于零时,仍得到整数型比值参数x。通过每x比特二维信 息选择一条扩频码对一维信息的一个码元进行扩频,以实现二维信息的快速传输。可见,整数型比值 参数x能根据二维信息的传输速率做灵活改变,满足隐蔽性更高的要求。

$$x = R_2/R_1 + \omega \tag{1}$$

为实现二维信息的映射传输,根据x值对二维信息进行分组。其中,d₂(n)的分组过程如下

$$d_{2}(n) = \begin{bmatrix} d_{2}(1) & d_{2}(2) & \cdots & d_{2}(x) \\ d_{2}(x+1) & d_{2}(x+2) & \cdots & d_{2}(2x) \\ \vdots & \ddots & \vdots \\ d_{2}(nx+1) & \cdots & \cdots & d_{2}((n+1)x) \end{bmatrix}$$
(2)

由于二维信息的传输速率大于一维信息的传输速率,使得同一个整周期内二维信息比一维信息提

1332

Fig.1 Schematic diagram of 2D-CRM sender

前传输完毕。因而 2D-CRM 扩频伪码序列的选择过程异于传统的扩频选码方式。在一个周期 T内包含动态选码过程 T₀和静态选码过程 T₁,在周期为 T₀时对二维信息映射传输,并挑选扩频伪码,直到二维信息全部传输完成,待二维信息全部传输完成后,即 T₁周期时,2D-CRM 则选择固定不变的扩频 伪码。

其中动态选码过程 T_0 中建立的星座旋转映射模型如图 2 所示。由于不能保证分组完整,即二维信息码元数 N与x的比值存在具有余数的情况,所以余数z比特(z < x)将作为最后的分组,完成所有信息的分组,并对其逐一进行映射操作。先依次将每组信息转换为十进制数 D,再根据x值查找星座图,对于最后一组的z比特信息,则直接根据z的值查找星座图,最后以星座图的0点方向为起始点,顺时针旋转 β 角后对应映射比特。其中, α 与 β 的关系可表示为

$$\begin{cases}
\alpha = \frac{360^{\circ}}{2^{x}} \\
\beta = D \cdot \alpha
\end{cases}$$
(3)

式中:α为旋转单位角;β为旋转角。

下一步采用进制转换的方法将每组映射信息转换为十进制数,并根据此数挑选本次相对应的扩频 伪码。图3为星座图模型示意图,考虑到*x*值可以是1、2、3、4、5,故图3中包含5种星座图模型。

当每组映射信息转换为十进制数后,可得出伪码通道S';,其对应于扩频伪码序列序号的方式为

$$S_j = S'_j + 1 \tag{4}$$

进一步根据扩频伪码序列序号可选择扩频伪码序列 $C_L(n)$,其中 $L = S_{j0}$ 例如:二维信息010001, 若x = 3,则将二维信息分解为010,001。以第1组010为例,计算得到D=2, $\beta = 90^{\circ}$,结合图3则010映 射得到011,再将011转换十进制数得到伪码通道 $S'_j = 3$,其对应的扩频伪码序列序号 $S_j = 4$,据此选择 扩频伪码序列 $C_4(n)$ 。

利用 *C_L*(*n*)对一维信息 *d*₁(*n*)进行扩频处理,进行载波调制后将信号发射出去。其中动态选码过程的调制信号可表示为

$$s_0(n) = A \cos(2\pi f_0 n + \phi_0) C_L(n) d_1(n)$$
(5)

式中: $C_L(n)$ 为动态扩频伪码; f_0 为数字频率; ϕ_0 为载波相位。

Fig.3 Schematic diagram of constellation mode

当二维信息先一维信息传输完毕后,2D-DSSS-CRM会进入静态选码过程 T_1 ,故未传输的一维信息便采用固定的伪随机噪声码(Pseudo-random noise code, PN)扩频伪码序列 $C_P(n)$,传输信号可表示为

$$s_{1}(n) = A \cos\left(2\pi f_{0}n + \phi_{0}\right) C_{P}(n) d_{1}(n)$$
(6)

式中: $s_1(n)$ 为静态选码过程的调制信号; $C_P(n)$ 为固定扩频伪码序列。

1.2 接收端原理

2D-CRM的接收端原理如图4所示,由于信号在信道传输过程中会受到噪声等其他干扰的条件下, 接收端接收的信号可表示为

$$R(n) = S(n-\tau) + n(n) + J(n)$$
(7)

式中: τ 为信号在传输过程中产生的随机延迟;n(n)为所有加性噪声;J(n)为干扰信号。

然后对接收信号*R*(*n*)进行降频、采样、滤波和解调等处理,在无失真理想的传输条件下传输延迟*τ* 值为0,得到的解调后的信号*D*(*n*)可表示为

$$D(n) = S'(n) \tag{8}$$

式中S'(n)表示对接收的信号进行解调。

Fig.4 Schematic diagram of 2D-CRM receiver

在接收端设置 M个相关器,并利用其对接收信号与扩频伪码进行相关运算并择大判决。

$$\begin{cases} U_{l} = \sum_{n=0}^{N-1} D(n) C_{l}(n) \\ U_{L} = (U_{l=L})_{\max} = \operatorname{Max}(U_{1}, U_{2}, \cdots, U_{l}, \cdots, U_{M}) \end{cases}$$
(9)

式中: $N \Rightarrow D(n)$ 周期内信息码位数; $C_l(n)$ 表示 M条伪码序列中的第l条扩频伪码的元素; U_l 为第l个相关器的输出; U_L 为最大输出。

为确定 T_1 周期的起始时刻,即何时二维信息传输结束。放置一个累加器用来在接收端计算当前通 道总数量,保存成功相关数量。当总数量达到 G时,说明二维信息传输完成。当总数量大于 G时,挑选 固定扩频伪码 $C_p(n)$ 进行扩频操作。

$$G = \left\lceil R_2 / x \right\rceil \quad (G \, \Im \, \underline{\mathsf{g}} \, \underline{\mathsf{g}}) \tag{10}$$

进一步通过检测到的成功相关通道,计算出最大输出U_L后,令最大峰值所对应的通道为*l*=L,则 第L通道对应的扩频伪码为C_L(n),得到的伪码序列号为S_j,利用式(11)可得伪码通道S'_j,即映射信息转换的十进制数。

$$\begin{cases} S_j = L\\ S'_j = S_j - 1 \end{cases}$$
(11)

根据伪码序列号 S'_j,将其转换为 x 位二进制信息,即映射信息,并通过接收端反映射关系模型获得 原始二维信息 d'₂(n)。其中反映射关系模型的本质是先根据 x 值查找星座图,再按照 x 位二进制数值在 星座图中的位置反向旋转,计算出旋转角度 β 后根据式(12),进而得到映射前的十进制数 D。

按照十进制转二进制算法,采用除2取余的逆序排列法从D中获取*x*位二进制信息,进而通过串并转换得到全部原始二维信息*d*¹₂(*n*),以此将D转换为二进制信息。

$$D = \frac{\beta}{\alpha} \tag{12}$$

根据成功相关通道 S[']_j对应的本地扩频伪码序列,对解调后的扩频信号做解扩处理,可恢复原始一维信息 d[']₁(n)。

$$\begin{cases} d'_{1}(n) = D(n)C_{L}(n) \\ d'_{1}(n) = D(n)C_{P}(n) \end{cases}$$
(13)

式中: $d'_{1}(n) = D(n)C_{L}(n)$ 为动态选码过程的解扩方法; $d'_{1}(n) = D(n)C_{P}(n)$ 为静态选码过程的解扩 方法。

2 仿真分析

利用MATLAB软件测试平台,对2D-CRM系统接收端进行仿真实验分析,通过对比试验验证其优越性。参数设置为:伪码速率为40.96 MHz,载波速率为81.92 MHz,采样频率为327.68 MHz,带宽为81.92 MHz,采用二进制相移键控调制方式。

2D-CRM 接收端包含了解调、解扩和多通道相关运算等模块,其中多通道相关运算模块在接收端 十分重要,因此着重对 2D-CRM 系统接收端的通道检测性能和误码性能进行测试分析。

2.1 通道检测分析

接收信号首先通过采样滤波处理,然后再对处理后的信号进行粗同步操作,即相位误差在很小范围之内时获取最大相关峰值,使用门限判决器检测接收端是否能够对接收信号捕捉成功。实验通过 R₂/R₁=1/1.5/3/3.5/4.5,x=1/2/3/4/5进行说明。首先将接收信号通过粗同步通道检测进行分析处理,再利用成功通道检测结果进行下一步的解调处理。

图 5~9为接收机粗同步通道检测结果图。设 $R_1 = 1.6k$, $R_2 = 1.6/2.4/4.8/5.6/7.2k$,动态因子 ω 的 值根据具体情况而定,伪码序列可由接收端的本地扩频伪码发生器生成,图 5~9中,分别为第1、4、8、3、 24通道的峰均比可以满足门限判决要求,即为成功相关通道;由于成功相关通道的伪码序列和发射端 伪码序列存在很好的相关性,因此相关峰值示意图近似,为此以图 10为例,展示成功通道的相关结果。

从图 10 可以看出,在采样点为 10 240 时得到最大相关峰值,并且其数值远大于其他采样点的相关 值,此时说明已成功捕捉。

因而测试结果表明:通过相关运算与通道检测后,同步成功通道的相关峰值明显,且伪码相位估计 误差为0 bit,故符合粗同步条件。

2D-CRM 接收信号捕获成功后,对信号进行解调与解扩处理,并解扩出一维信息。并且成功相关 通道进行反映射操作,可解析出二维信息。以 $R_1 = 1.6k_XR_2 = 2.4k_X\omega = 0.5_XX = 2$ 为例,2D-CRM 信息

1336

对比如表1所示,并计算一维原始信息、一维解扩信息、二维原始信息与二维解析信息的误码率,为清楚观察,只显示出部分信息。由表1可知,在不考虑信噪比的情况下,信息的误码率为0。

由此表明,在不同x值的情况下,2D-CRM接收端仍可以进行正确的解调与解扩处理,并得出结论: 2D-CRM具有更优秀的隐蔽性能,并且当比值参数分别为1、2、3、4、5时,信息的传输速率对应提高了 100%、150%、300%、350%和450%。因此所提方法的信息传输速率提高超过100%,故提高了信息的 传输性能。

2.2 误码率分析

为了验证 2D-CRM 的误码性能,在实验中加入了传统的直接序列扩频系统进行仿真测试,并在改变 *x* 值的情况下,分别对两者的误码性能进行对比实验分析。

实验分为x = 1/2/3/4/5这5种情况,并采用加性高斯白噪声信道,测试两种传输方法在信噪比 (Signal-noise ratio, SNR)为-19.5~-22 dB之间的误码率变化。

图 11~15 所示为不同 x 值下的 2D-CRM 传输 方法与传统 DSSS 方法的误码率比较图。从中可 以看出,一维信息的误码率测试结果与传统 DSSS 方法的误码率近似,二维信息的误码率会 略低于一维信息误码率。同时,随着 x 的增大,二 维信息的误码率优势略明显。在信噪比很大时两 系统具有较好的通信效果,当 SNR=-20 dB时, 两种传输方法逐渐发生误码现象,当 SNR= -20.5~-21.5 dB时,两种传输方法的误码率急 剧恶化。但是当 SNR=-22 dB,信噪比逐渐减 小到一定值以后,误码率变化趋势减缓,并达到最 大值。

本文方法中一维信息通过扩频处理进行传输,其误码率测试结果与传统DSSS的误码率近似。通过星座图,将二维信息转换成映射信息进行传输,授权接收方利用扩频伪码集合中的扩频 伪码进行并行多通道相关运算,可以获悉成功传输通道(扩频伪码),进而利用星座旋转映射的逆 映射得到此时的二维信息;由于此逆映射是规则 性运算,不受信噪比影响,只受多通道相关运算影

Table 1	Data comparison table of 2D-CRM		
一维原始	一维解扩	二维原始	二维解析
信息	信息	信息	信息
1	1	0	0
0	0	1	1
0	0	1	1
0	0	1	1
0	0	1	1
0	0	0	0
1	1	1	1
1	1	0	0
:	:	:	:
1	1	1	1
0	0	1	1
		:	:
		0	0
		1	1
		1	1

表1 2D-CRM 信息对比表

响,而且扩频伪码具有良好的相关特性,其相关运算抗低信噪比能力较强,因此二维信息的误码率会略低于一维信息误码率。同时,随着x的增大,同一相关通道所映射的二维信息越多,误码率优势略明显。由此可见,2D-CRM的误码性能与信噪比和比值参数x值相关,而x=5时2D-CRM的整体误码率最低,通信效果最佳。

通过动态控制扩频序列,性能代价相较于其他方法,增加了多通道相关,通过适当牺牲复杂度来换 取更高的信息传输速率,而且获得了更好的误码性能和保密特性。例如当*x* = 2时,相关通道数目为4,

原有的DSSS系统相关通道数目为1,所以本文方法增加 了3个相关通道,即增加了系统的复杂度来换取误码率的 提升和二维信息的隐蔽性。一维信息经过扩频处理并传 输,未授权方是有可能通过相关运算获取并解扩得到,但 是,二维信息是利用星座旋转映射来达到隐性映射传输 的,对于未授权方而言,即使通过相关运算可以获取某时 刻对应的扩频伪码,但由于其未知此方法中的星座旋转映 射规则,因此无法解映射得到二维信息,从而使得二维信 息具有更好的隐蔽性和保密性。且由误码率曲线可知,在 相同的噪声环境下,2D-CRM的误码率优于传统DSSS的 误码率。

3 结束语

本文提出了一种星座旋转映射的二维信息传输方法, 即利用进制转换与星座旋转的方法在直扩系统的基础上 构建了一个二维信息映射关系模型,并对2D-CRM与传统

DSSS接收端的误码性能进行了分析,结果表明2D-CRM方法具有更好的误码性能。该方法可在传输一维信息的同时映射传输二维信息,加快信息的传输速率,并加强了系统的安全性能,具有更好的信息 传输隐蔽性。本文方法适用于对传输速率有较高要求,对隐蔽性具有一定要求,且能适应多相关通道 高复杂度的系统。

参考文献

- [1] 谢岸宏,朱立东,翟继强,等.一种抗盲检测的直扩隐蔽信号设计方法[J].电子学报,2018,46(12):2817-2823.
 XIE Anhong, ZHU Lidong, ZHAI Jiqiang, et al. A method of designing covert DSSS-signal for anti-blind detection[J]. Acta Electronica Sinica, 2018, 46(12):2817-2823.
- [2] 李振东,谭维凤,康成斌,等.直接序列扩频系统抗干扰能力研究[J].电子与信息学报,2021,43(1):116-123.
 LI Zhendong, TAN Weifeng, KANG Chengbin, et al. Study on anti-jamming capability of direct sequence spread spectrum

system[J]. Journal of Electronics and Information, 2021, 43(1): 116-123.

- [3] 熊竹林,安建平.一种低复杂度的低信噪比非相干直扩信号捕获算法[J].电子学报,2016,44(4):753-760.
 XIONG Zhulin, AN Jianping. A low complexity acquisition algorithm for DSSS signal with low SNR and non-coherent data modulation[J]. Acta Electronica Sinica, 2016, 44(4):753-760.
- [4] 何成兵,荆少晶,花飞,等.循环移位扩频多用户水声通信[J].通信学报,2017,38(7):11-17.
 HE Chengbing, JING Shaojing, HUA Fei, et al. Multiuser cyclic shift keying spread spectrum underwater acoustic communication[J]. Journal on Communications, 2017, 38(7): 11-17.
- [5] 康家方,王红星,刘锡国,等.基于扩频码时移位置调制的卫星导航信号设计[J].通信学报,2020,41(4):54-61. KANG Jiafang, WANG Hongxing, LIU Xiguo, et al. Novel navigation signal design based on spreading code time shift position modulation[J]. Journal on Communications, 2020, 41(4): 54-61.
- [6] YI D, JIN H, KIM M C, et al. An ultrasonic object detection applying the ID based on spread spectrum technique for a vehicle
 [J]. Sensors, 2020, 20(2): 414.
- [7] ANTON P, ANTTI P, ALEKSEI R, et al. Sensitivity analysis of a PLC-based DSSS anti-islanding system in power distribution grids[J]. Anton Poluektov International Journal of Electrical Power and Energy Systems, 2019, 113(10): 739-747.
- [8] 朱行涛,刘郁林,何为,等.基于变换域滤波的直扩通信单通道混合信号分离抗干扰方法[J].系统工程与电子技术,2016,21(10):2405-2412.
 ZHU Xingtao, LIU Yulin, HE Wei, et al. Anti jamming method of single channel mixed signal separation in DSSS communi-

cation based on transform domain filtering[J]. Systems Engineering and Electronic Technology, 2016, 21(10): 2405-2412.

- [9] 汪勃, 谌明, 梁光明, 等. 自适应三门限窄带干扰抑制算法[J]. 电子学报, 2015, 43(1): 13-17.
 WANG Bo, CHEN Ming, LIANG Guangming, et al. Adaptive tri-threshold narrowband interference suppression algorithm
 [J]. Acta Electronica Sinica, 2015, 43(1): 13-17.
- [10] 刘少坤,闫晓鹏,栗苹,等.基于码元重构的伪码调相脉冲多普勒引信干扰信号设计[J]. 兵工学报, 2018, 39(6): 1088-1094.
 LIU Shaokun, YAN Xiaopeng, LI Ping, et al. Design of jamming signal on pseudo-random code phase-modulation and pulse doppler combined fuze based on code reconstruction[J]. Acta Armamentarii, 2018, 39(6): 1088-1094.
- [11] 何涛,李志强,梁旭文.一种非周期调制直扩信号扩频码估计方法[J]. 宇航学报, 2013, 34(4): 546-551.
 HE Tao, LI Zhiqiang, LIANG Xuwen. A spread spectrum code estimation method for aperiodic modulation DSSS signal[J].
 Journal of Astronautics, 2013, 34(4): 546-551.
- [12] 任啸天,徐晖,王翔,等.一种针对短码、周期长码直扩信号扩频序列盲估计方法[J]. 宇航学报, 2011, 32(12): 2596-2600.
 REN Xiaotian, XU Hui, WANG Xiang, et al. A blind estimation method for spread spectrum sequence of short code and long period code DSSS signal[J]. Journal of Astronautics, 2011, 32(12): 2596-2600.
- [13] 张丹娜, 钱锋, 冯辉, 等. Walsh 码软扩频信号降噪算法[J]. 系统工程与电子技术, 2020, 25(4): 773-780.
 ZHANG Danna, QIAN Feng, FENG Hui, et al. Noise reduction algorithm of Walsh code soft spread spectrum signal[J]. Systems Engineering and Electronic Technology, 2020, 25(4): 773-780.
- [14] 王伟,刘洋,李欣.基于迭代信息传递的PN码快速捕获方法研究[J]. 宇航学报, 2008, 29(4): 1375-1380.
 WANG Wei, LIU Yang, LI Xin. Research on fast PN code acquisition method based on iterative information transmission[J].
 Journal of Astronautics, 2008, 29(4): 1375-1380.
- [15] 张天骐,杨强,宋玉龙,等.基于相似度的直扩信号盲解扩方法[J].系统工程与电子技术,2017,25(7):1451-1456. ZHANG Tianqi, YANG Qiang, SONG Yulong, et al. Blind despreading method of direct sequence spread spectrum signal based on similarity[J]. Systems Engineering and Electronic Technology, 2017, 22(7):1451-1456.
- [16] 张花国,曾辉,尤少钦. 一种利用ILSP的同步DS-CDMA信号快速盲解扩算法[J]. 宇航学报, 2019, 40(7): 818-823.
 ZHANG Huaguo, ZENG Hui, YOU Shaoqin. A fast blind despreading algorithm for synchronous DS-CDMA signals using ilsp
 [J]. Journal of Astronautics Sinica, 2019, 40(7): 818-823.
- [17] 李萌,黄忠华.超宽带引信取样脉冲宽度与相关接收输出信号幅度关系研究[J]. 兵工学报, 2016, 37(11): 1989-1994.

1340

刘 芳 等:星座旋转映射的二维信息传输方法

LI Meng, HUANG Zhonghua. Research on relation between sampling pulse width and output signal amplitude for ultra-wideband radio fuze[J]. Acta Armamentarii, 2016, 37(11): 1989-1994.

- [18] 欧林晖. 超宽带通信中的多用户检测技术[J]. 信息通信, 2015, 32(3): 34-35. OU Linhui. Multiuser detection technology in ultra wideband communication[J]. Information Communication, 2015, 32(3): 34-35
- [19] 刘业君,刘玉莹,汉鹏超,等.OFDM无源光网络中多业务分层带宽分配算法[J].通信学报,2018,39(9):84-93. LIU Yejun, LIU Yuying, HAN Pengchao, et al. Lavered bandwidth allocation algorithm for multi-service in orthogonal frequency division multiplexing passive optical network[J]. Journal on Communications, 2018, 39(9): 84-93.
- [20] 马英杰,赵耿,魏占祯,等.基于量子混沌映射降低 OFDM 系统 PAPR 的算法研究[J]. 通信学报, 2019, 40(1): 195-200. MA Yingjie, ZHAO Geng, WEI Zhanzhen, et al. Research on the algorithm for reducing the PAPR of OFDM system based on quantum chaotic mapping[J]. Journal on Communications, 2019, 40(1): 195-200.
- [21] 梁俊杰,李凤华,刘琼妮,等. MapReduce框架下的优化高维索引与KNN查询[J]. 电子学报, 2016, 44(8): 1873-1880. LIANG Junjie, LI Fenghua, LIU Qiongni, et al. Optimized high-dimensional index and KNN query in mapreduce[J]. Acta Electronica Sinica, 2016, 44(8): 1873-1880.
- [22] 李北明, 王俊, 薛伟, 等. 基于循环映射算法的并行组合扩频通信[J].系统工程与电子技术, 2016, 21(7): 1654-1659. LI Beiming, WANG Jun, XUE Wei, et al. Parallel combinatorial spread spectrum communication based on cyclic mapping algorithm[J]. Systems Engineering and Electronic Technology, 2016, 21(7): 1654-1659.
- [23] 钟兆根,张立民,武恒州.基于RJ-MCMC的DS-CDMA信号扩频码与信息序列盲估计[J]. 宇航学报, 2013, 34(5): 706-714. ZHONG Zhaogen, ZHANG Limin, WU Hengzhou. Blind estimation of DS-CDMA spread spectrum code and information seguence based on RJ-MCMC[J]. Journal of Astronautics, 2013, 34(5): 706-714.
- [24] CHEN K, LI X G, ZHAO S, et al. Carrier frequency offset eestimation for BPSK signals in coherent optical communications [J]. Procedia Computer Science, 2018(131): 1128-1133.

作者简介:

刘芳(1979-),女,博士,教 授,研究方向:无线通信, E-mail:zhqing1019@163. com o

冯永新(1974-),通信作者, 女,博士,教授,研究方向: 无线通信、电子对抗, E-mail:fengyongxin@263. net

陈立志(1997-),男,硕士, 研究方向:扩频通信。

牟琳(1996-), 女, 硕士, 研 究方向:扩频通信。

(编辑:陈珺)