• 2023年第38卷第4期文章目次
    全 选
    显示方式: |
    • 基于机器学习的超声造影分析综述

      2023, 38(4):741-758. DOI: 10.16337/j.1004-9037.2023.04.001

      摘要 (602) HTML (434) PDF 3.62 M (1380) 评论 (0) 收藏

      摘要:超声造影(Contrast-enhanced ultrasound, CEUS)通过外周静脉注入超声造影剂,显著增强来自肿瘤微血管的血流信号,便于临床医生以实时、动态的方式评估肿瘤血管生成、周边浸润等,广泛应用于多器官病变诊断、预后评估和治疗方案规划等方面。近年来,以深度学习为代表的机器学习方法快速发展,为动态超声造影智能分析带来新的机遇。深度学习方法很大程度上拓宽了超声造影临床应用范围,提高了其诊疗效能。但与常规超声影像类似,超声造影仍然存在斑点噪声、呼吸运动干扰和标准化程度低等问题,使得动态灌注时间、空间信息挖掘面临挑战。本文系统性回顾了近年来超声造影智能分析相关工作,涵盖良恶性鉴别、恶性分级、疗效预测和诊疗方案选择等方面应用,总结了当前影像组学及深度学习方法在超声造影分析领域的最新进展,并指出当前研究的局限性和未来发展方向。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
    • 基于深度学习的自动睡眠分期研究综述

      2023, 38(4):759-776. DOI: 10.16337/j.1004-9037.2023.04.002

      摘要 (777) HTML (516) PDF 5.02 M (1870) 评论 (0) 收藏

      摘要:睡眠分期是为了分析多导睡眠图记录而进行的重要过程,在睡眠监测和睡眠障碍诊疗中发挥着关键作用。传统的手动睡眠分期需要专业知识,繁琐且耗时;而深度学习通过模拟人脑解释信息的机制来构建模型,具有强大的自动特征提取及特征表达功能。将深度学习方法应用于睡眠分期研究,不依赖于手工特征设计,能够实现睡眠分期的自动化。本文着眼于2017年以来的一些典型的自动睡眠分期研究,重点从单视图和多视图输入两个方面系统回顾了应用于自动睡眠分期中的深度学习模型,并分析了多视图模型存在的难点,指出了其具有的潜在研究价值。最后,对自动睡眠分期未来的研究方向进行了探讨。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
    • 基于知识表示向量的可解释深度学习模型及其疾病预测应用

      2023, 38(4):777-792. DOI: 10.16337/j.1004-9037.2023.04.003

      摘要 (275) HTML (268) PDF 912.54 K (548) 评论 (0) 收藏

      摘要:近年来,深度学习方法广泛应用于各种疾病预测任务,甚至在其中一些方面超过了人类专家。 然而,算法的黑盒性质限制了其临床应用。对此,本文结合知识表示学习和深度学习方法构建了一种融入知识表示向量的可解释深度学习模型。该模型首先依据体检指标正常范围构建体检指标与检测值之间的关系图,并通过基于知识表示学习的深度学习模型对人体体检指标与检测值关系图进行编码,然后将患者体检数据表示为向量,输入到构建的自注意力机制和卷积神经网络构建的分类器中来实现疾病预测。将模型应用于糖尿病预测实验中,其准确率和召回率均优于对比的机器学习方法。与表现较优的随机森林算法相比,模型的准确率和召回率分别提升了0.81%和5.21%。实验结果表明,通过可解释性方法将知识表示学习和深度学习技术融合应用于糖尿病预测,可以达到对糖尿病的早期发现与辅助诊断的目的。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
    • 基于多模态图像融合的早期蕈样肉芽肿识别

      2023, 38(4):792-801. DOI: 10.16337/j.1004-9037.2023.04.004

      摘要 (302) HTML (247) PDF 1.57 M (662) 评论 (0) 收藏

      摘要:早期蕈样肉芽肿(Mycosis fungoid, MF)可表现为红斑鳞屑性皮损,很难从银屑病及慢性湿疹等良性炎症性皮肤病中鉴别出来。本文提出了一种基于多模态图像融合的早期蕈样肉芽肿识别方法。该方法基于皮肤镜图像和临床图像,采用ResNet18网络提取单模态图像的特征;设计跨模态的注意力模块,实现两种模态图像的特征融合;并且设计自注意力模块提取融合特征中的关键信息,改善信息冗余,从而提高蕈样肉芽肿智能识别的准确度。实验结果表明,本文所提出的智能诊断模型优于对比算法。将本文模型应用于皮肤科医生的实际临床诊断,通过实验组医生和对照组医生平均诊断准确率的变化证实了本文模型能够有效提升临床诊断水平。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
    • 基于同步性静息态脑网络的原发性失眠诊断

      2023, 38(4):802-814. DOI: 10.16337/j.1004-9037.2023.04.005

      摘要 (228) HTML (161) PDF 3.37 M (632) 评论 (0) 收藏

      摘要:全球有约1/3的人口曾受到失眠的困扰,研究表明脑电的高度觉醒是失眠的一个重要原因,表现在高频脑电活动的增强。然而,由于存在较大的干扰因素,日常静息态条件下评判困难。因此本文提取原发性失眠患者和健康对照的脑电图(Electroencephalogram,EEG)高频频带(Beta、Gamma频带),使用更适合EEG这种非线性、非平稳信号的相位锁相值(Phase locking value, PLV)方法来构建静息态功能脑网络,使用自适应阈值技术进行二值化处理。为了提升失眠症脑网络特征评价的可靠性,综合了各脑网络特征,提出了用于失眠症检测的脑网络综合度量指标。且发现在Gamma频带上,综合指标在原发性失眠患者组与健康对照组之间存在显著性差异(p=0.044)。应用支持向量机(Support vector machine, SVM)进行自动分类,在Beta频带上的正确率达77.7%,灵敏度达90.7%,相较于原始网络特征正确率提高了9.4%,灵敏度提高了20.7%;同时与现有研究对比,本文提出的脑网络综合度量指标的正确率提升了19.4%,灵敏度提升了20.7%。此外,发现Beta频带的综合度量指标分类效果更好,对于失眠症患者的日常诊断具有潜在的应用价值。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
    • 基于脑电网络图特征的情绪识别研究

      2023, 38(4):815-823. DOI: 10.16337/j.1004-9037.2023.04.006

      摘要 (410) HTML (280) PDF 1.09 M (875) 评论 (0) 收藏

      摘要:针对情绪脑电信号提出一种网络图特征学习与情绪识别算法。首先,利用情绪脑电数据构建对应的情绪脑电网络;其次,在由情绪脑电网络尺度定义的高维空间构建脑电网络样本间的局部邻接关系图以挖掘样本集的分布特性,进而得到样本集的图拉普拉斯矩阵;在此基础上,进一步利用谱图理论对情绪脑电网络的最优低维空间映射进行求解,在保留原始样本局部邻接关系的前提下实现对情绪脑电网络的降维与重新表达,并将每个情绪脑电网络样本表示成1组脑电网络特征集;最后利用提取到的情绪脑电网络特征集,结合支持向量机分类学习算法,针对情绪识别任务进行识别模型的训练和学习,实现对情绪状态的准确解码与识别。在国际公开情绪脑电数据集的实验结果表明:相较于传统情绪识别算法,本文所提方法能有效提升情绪识别准确率,在基于公开数据集的多类情绪识别任务中分别达到91.85%(SEED数据集, 3类)、79.36%(MAHNOB-HCI数据集,3类)和79%(DEAP数据集,4类)的稳健识别效果。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
    • 低密度脑电自适应去噪方法

      2023, 38(4):824-836. DOI: 10.16337/j.1004-9037.2023.04.007

      摘要 (267) HTML (218) PDF 3.06 M (748) 评论 (0) 收藏

      摘要:便携式和可穿戴设备的低密度脑电图更便于实际使用,但会受到多种不可预知的噪声影响,给去噪带来极大的困难。脑活动成分较为相似,在特征空间分布较为紧密,而噪声成分与脑电成分不同,差异性大,在特征空间分布较为分散。本文提出了一种低密度脑电自适应去噪方法,采用小波分解和盲源分离方法提取潜在成分,并基于脑电和噪声成分在特征空间的分布特性,采用单类支持向量机识别并去除远离成分分布中心的异常成分。仿真数据的定量分析结果表明,提出的方法在肌电、眼电和工频等噪声抑制方面均优于现有方法;通过对真实脑电数据的成分簇可视化分析,直观展示了低密度脑电噪声有效去除的原因。结合盲源分离和异常检测的思路进行低密度脑电去噪,不需要设定特定噪声相关的特征参数,能够自适应地去除多种类型噪声同时有效保留脑活动成分,具有优良的性能和实用性。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
    • 基于多变量形态学特征的健康老年人认知发展预测算法

      2023, 38(4):837-848. DOI: 10.16337/j.1004-9037.2023.04.008

      摘要 (285) HTML (147) PDF 1.64 M (535) 评论 (0) 收藏

      摘要:由于体积、表面积等常规形态学指标对于皮层下核团而言过于笼统,因此传统的形态特征获取手段难以检测到其表面形态的细微变化。为解决这一问题,本文提出了一种针对皮层下核团的精细特征提取算法,并将其应用到老年人认知状态预测任务上。通过表面共形参数化、表面共形表示和基于互信息的表面流配准,提取了46名被试双侧海马和杏仁核各15 000×2个顶点上的形态学特征;通过斑块选择、稀疏编码与字典学习,和最大池化的降维流程,避免了维度诅咒的同时充分保留了核团的纹理信息;最后,以树为弱学习器,采用GentleBoost算法集成了最终的强分类器做认知预测。结果显示,仅纳入海马和杏仁核两个皮层下结构的新颖特征,即可达到85%的预测准确率,为皮层下结构的精细特征发掘提供了新思路。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
    • 基于两级神经网络的心音分割

      2023, 38(4):849-859. DOI: 10.16337/j.1004-9037.2023.04.009

      摘要 (257) HTML (194) PDF 1.65 M (692) 评论 (0) 收藏

      摘要:心音信号是分析诊断心脏疾病的重要信号,而心音分割是对其进行分析处理之前必不可少的一步。本文通过将心音分割任务分离为定位与识别两个子任务,提出一种两级卷积神经网络,由定位网络和判别网络两级构成,分别完成心音信号的识别与定位。首先将原始信号通过滑动窗口进行分帧,然后通过短时傅里叶变换得到其频谱,再通过梅尔滤波器得到其梅尔频谱系数(Mel frequency spectral coefficient, MFSC)特征,输入第1个定位网络对其是否为心音段进行判断,如果是的话,再输入判别神经网络,识别第一心音与第二心音,从而实现心音的分割。最后利用多帧结果投票,减小误判。同时,在卷积神经网络中引入空间注意力机制,实验结果表明,这种加入了注意力机制的两级神经网络模型在心音分割任务上比使用单个卷积神经网络分类模型的准确率更高,也使得模型更加简单,轻量化。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
    • 一种可用于鉴别肝癌呼气信号的改进AdaBoost算法

      2023, 38(4):860-872. DOI: 10.16337/j.1004-9037.2023.04.010

      摘要 (161) HTML (156) PDF 2.94 M (552) 评论 (0) 收藏

      摘要:提出一种改进的AdaBoost强化学习算法,并将其应用于鉴别健康者和肝癌患者的呼气信号。首先采集志愿者(包括健康对照组和肝癌患者)的呼气信号,利用Relief算法提取其主要特征;接着融合Stacking 模型,基于传统的机器学习算法训练得到若干基分类器组,构建一个个子分类器。为减少训练样本对分类器性能的影响,利用K折交叉,先后得到k个基分类器,形成一个基分类器组;进一步,由投票法得到该基分类器组,即子分类器对测试集的预测结果;然后根据各子分类器对训练集的预测错误率调整训练样本,并获得各子分类器的权重系数;最后将多个子分类器的预测结果进行加权组合,得到最终预测结果。实验结果表明,相比传统的AdaBoost算法,改进的AdaBoost算法在鉴别肝癌呼气和健康对照组呼气时,错误率明显下降,鲁棒性有所提升。该算法在鉴别肝癌呼气时,准确率可以达到90%左右,特异性和精确度也均超过95%。因此,改进的AdaBoost算法可有效提升肝癌呼气鉴别精度,对通过呼气鉴别肝癌、实现早期诊断的研究具有重要意义。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
    • 改进全卷积神经网络的甲状腺结节分割方法

      2023, 38(4):873-885. DOI: 10.16337/j.1004-9037.2023.04.011

      摘要 (348) HTML (233) PDF 1.71 M (541) 评论 (0) 收藏

      摘要:为了更加精确地分割出甲状腺结节,本文提出了一种改进的全卷积神经网络(Fully convolutional network,FCN) 分割模型。相较于FCN,本文方法加入了空洞空间卷积池化金字塔 (Atrous spatial pyramid pooling, ASPP) 模块与多层特征传递模块(Feature transfer, FT),并采用LinkNet模型中Decoder模块进行上采样,VGG16主干网络实现特征提取下采样。实验采用来自斯坦福AIMI(Artificial intelligence in medicine and imaging)共享数据集的17 413张超声甲状腺结节图像分别用于训练、验证和测试。实验结果表明,相比于其他多种分割模型,本文模型在平均交并比(mean Intersection over union,mIoU),Dice相似系数,F1分数3个分割指标上分别达到了79.7%,87.6%和98.42%,实现了更好的分割效果,有效地提升了甲状腺结节的分割精确度。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
    • 基于低秩表示判别域适应的多中心自闭症诊断

      2023, 38(4):886-897. DOI: 10.16337/j.1004-9037.2023.04.012

      摘要 (257) HTML (179) PDF 1.88 M (668) 评论 (0) 收藏

      摘要:自闭症的诊断主要依靠患者的病史与临床症状表现,尚缺乏客观的评价指标,因此挖掘与疾病相关的生物标记,对于实现自闭症的早期识别与干预至关重要。尽管多中心脑影像数据增加了样本数量并提高了数据的统计能力,有助于提高自闭症的诊断性能,但目前的研究常受到数据异质性的困扰。为此本文提出基于低秩表示判别域适应的诊断模型,实现对多中心自闭症的预测分析。首先将源域数据和目标域数据映射到公共空间,并在空间用目标域数据对源域数据进行重新表示,从而降低源域和目标域之间的分布差异;其次通过学习正交重构矩阵使得源域数据在公共空间中的表示能够保留主要能量,从而适合于随后的学习任务;最后使用源域数据的标签信息将分类损失整合到训练过程中,从而保证公共空间表示的判别能力。为了求解所提出的模型,提出了基于交替方向乘子算法的优化策略。实验结果表明,该模型能够降低多中心数据分布差异,实现知识的有效迁移,从而提高多中心自闭症的诊断性能。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
    • 基于频域特征图的高血压靶器官损伤脉搏波预测模型

      2023, 38(4):898-914. DOI: 10.16337/j.1004-9037.2023.04.013

      摘要 (150) HTML (197) PDF 4.95 M (568) 评论 (0) 收藏

      摘要:针对高血压靶器官损伤时域脉搏波预测模型效率较低和分类精度较差的问题,本文提出了一种基于频域脉搏波特征图预测模型,实现高效无创辅助诊断。本文采用高斯滤波替换三角滤波,将脉搏波时域特征转换为频域矩阵特征图,并采用一种改进的SiMAM注意力机制模型EfficientNetS,提高脉搏波全局特征提取能力。608例临床高血压靶器官损伤脉搏波样本经5-Fold交叉验证后分类模型评估指标F1 score、Accuracy、Precision、Sensitivity、曲线下面积(Area under the curve,AUC)值分别为:97.31%、98.72%、97.71%、97.04%、99.13%。与典型模型相比,本文方法具有较高的分类精度和泛化性能。此外,本文采用随机森林算法研究时域和频域特征与脉搏波分类相关性,深入挖掘潜在的影响高血压靶器官损伤分类的关键因素,发现高血压靶器官损伤的发病机理,为临床诊断提供有效支持。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
    • 基于DSE-Net的甲状腺相关眼病患病区域轻量型分割算法

      2023, 38(4):915-925. DOI: 10.16337/j.1004-9037.2023.04.014

      摘要 (227) HTML (165) PDF 3.58 M (525) 评论 (0) 收藏

      摘要:临床活动性评分(Clinical activity score,CAS)是临床诊断甲状腺相关眼病(Thyroid associated ophthalmopathy, TAO)的重要评估方法之一。由于TAO症状的多样性和非患病区域的影响,人工诊断TAO容易受医生的主观经验影响。精准获取TAO患者脸部关键区域是早期诊断TAO的重要前提之一。因此,本文提出了一种基于DSE-Net的TAO患病区域自动分割的轻量型算法。DSE-Net采用U-Net作为主干模型,设计的密集型挤压-激励(Dense squeeze-and-excitation, DSE)通道注意力模块逐层提取编码结构的低级特征并融合解码结构的高级特征,进一步增强模型的特征提取能力。在巩膜、眼睑和泪阜数据集上的测试证明了DSE-Net的有效性,其中Dice系数分别达到了84.8%、84.7%和92.7%,IoU分别达到了74.0%、74.7%和86.5%。同时经过大量的对比实验证明了DSE-Net的优越性。提出的模型具有参数少、结构简单和特征提取能力强等特点,为TAO的早期诊断和预后治疗提供了重要信息。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
    • 基于相空间重构与RBF网络的心冲击波补偿研究

      2023, 38(4):926-936. DOI: 10.16337/j.1004-9037.2023.04.015

      摘要 (164) HTML (168) PDF 1.64 M (460) 评论 (0) 收藏

      摘要:在基于心冲击描记图的非接触式心率检测方法中,心冲击波的真实形态容易在体动发生时被掩盖。为解决无效信号给心跳点定位造成的阻碍,提出一种相空间重构与RBF神经网络结合的体动区间波形补偿模型。首先利用改进的C-C法选取合适的重构参数,并通过动态k-均值聚类确定网络拓扑结构,将动作发生前时间序列在重构空间中的相点作为学习样本输入到模型中,进而实现对无效信号段的单步递归预测。实验结果显示,该预测模型性能良好,能够减少原始信号中不规则噪声带来的影响,经模型修正后计算逐拍心动周期的平均误差为1.27%,平均绝对误差为8.9 ms,有效避免了心跳事件的误判。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
    • 融合残差Inception与双向ConvGRU的皮肤病变智能分割

      2023, 38(4):937-946. DOI: 10.16337/j.1004-9037.2023.04.016

      摘要 (231) HTML (237) PDF 1.32 M (569) 评论 (0) 收藏

      摘要:由于皮肤病病灶的形状、颜色以及纹理差异极大,且边界不明确,使得传统深度学习方法很难对其进行准确分割。因此本文提出了一种融合残差Inception与双向卷积门控循环单元 (Convolutional gated recurrent unit, ConvGRU)的皮肤病变智能分割模型。首先设计了一种云边协同的皮肤病变智能分割服务网络模型,通过该网络模型,用户可以获得快速、准确的分割服务;其次,构建了一种新的皮肤病变智能分割模型,通过融合残差Inception与双向ConvGRU,该模型能融合不同尺度特征,提高模型特征提取能力,并能充分利用底层特征与语义特征之间的关系,捕获更丰富的全局上下文信息,取得更好的分割性能;最后,在ISIC 2018数据集上的实验结果表明,所提出的智能分割模型与近期提出的几种U-Net扩展模型相比,取得了更高的准确率与Jaccard系数。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
    • 基于局部实例匹配无监督式学习的行人重识别

      2023, 38(4):947-958. DOI: 10.16337/j.1004-9037.2023.04.017

      摘要 (220) HTML (223) PDF 2.44 M (650) 评论 (0) 收藏

      摘要:无监督域适应(Unsupervised domain adaptation,UDA)方法通过全局特征分布匹配实现源域到目标域的知识迁移,但忽略了细粒度的局部实例信息。本文提出了一种基于双层域自适应(Two-tiered domain adaptation,TTDA)的无监督行人重识别方法,使用全尺寸网络(Omni-scale network,OSNet)作为骨干网络,在端到端深度学习框架中联合执行源域和目标域之间的全局特征分布匹配和局部实例匹配,从源域和目标域之间不同行人ID的关联中挖掘可迁移的有用知识,并通过知识选择机制提高了跨域适应性。在多个大型公开数据集上的实验结果表明,与其他先进方法相比,所提方法在源域到目标域的无监督行人重识别的平均精度均值(mean Average precision,mAP)和top-k命中率均取得显著提升。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
    • 图像增强对低光照场景语义分割影响研究

      2023, 38(4):959-977. DOI: 10.16337/j.1004-9037.2023.04.018

      摘要 (313) HTML (210) PDF 7.01 M (714) 评论 (0) 收藏

      摘要:在低光照环境下获取的图像通常会出现图像亮度低、颜色失真、细节信息丢失以及对比度低等问题。为了满足主观视觉体验的需求,往往会对图像进行增强处理。然而,图像增强对机器视觉应用性能的影响缺乏系统研究。本文以语义分割这一机器视觉应用为例,首先对主流的语义分割方法和低光照图像增强方法进行归纳总结,然后对经图像增强方法处理的低光照图像进行语义分割,从而探究图像增强方法对低光照场景语义分割性能的影响。实验结果表明,增强处理可以改善图像的人眼视觉效果,但是可能会引入噪声等影响,并且图像增强方法和语义分割方法关注的重点和特征不完全一致。图像增强对于低光照场景语义分割性能的促进作用并不明显,甚至会带来负面影响。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
    • 大变形场下高速数字图像相关并行计算研究

      2023, 38(4):978-985. DOI: 10.16337/j.1004-9037.2023.04.019

      摘要 (151) HTML (189) PDF 2.04 M (533) 评论 (0) 收藏

      摘要:由于大变形场下图像去相关效应的影响,数字图像相关(Digital image correlation,DIC)始终无法完成图像间的并行计算。为了突破这一瓶颈,本文提出了一种基于Accelerated-KAZE(AKAZE)的参考图更新方法,可在DIC正式计算之前完成参考图更新工作,为并行计算提供独立数据。并构建了一种图形处理器(Graphics processing unit,GPU)并行计算架构,可对所有子区独立估值,完成图像间和子区间的并行计算。最后对丁腈橡胶进行了拉伸测试,结果表明相比于传统的串行DIC计算方法,运用本文的并行方法速度可提升两个数量级。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
    • 基于椭球法的携能通信OFDM系统能效优化算法

      2023, 38(4):986-994. DOI: 10.16337/j.1004-9037.2023.04.020

      摘要 (283) HTML (161) PDF 1.09 M (537) 评论 (0) 收藏

      摘要:随着无线通信技术的快速发展,无线接入设备日益增多,但系统能耗也在不断增长。具备无线携能通信能力的正交频分复用(Orthogonal frequency division multiplexing, OFDM)系统可以有效提高系统能量效率。本文针对以系统能效为优化目标的资源分配问题,提出了基于椭球法的携能通信OFDM系统能效优化算法。该算法采用椭球法对拉格朗日乘子进行更新,可以有效加快算法收敛速度,提升算法性能。仿真实验结果表明,所提出基于椭球法的能效优化算法能有效解决以系统能效为优化目标的资源分配问题,与次梯度法相比,椭球法的收敛速度更快,能够显著地降低算法复杂度。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
快速检索
检索项
检索词
卷期检索