• 2020年第35卷第3期文章目次
    全 选
    显示方式: |
    • 基于CUR矩阵分解的多核学习正则化路径近似算法

      2020, 35(3):381-391. DOI: 10.16337/j.1004-9037.2020.03.001

      摘要 (414) HTML (732) PDF 658.94 K (1510) 评论 (0) 收藏

      摘要:多核学习在解决不规则、大规模数据问题时表现出良好的优越性。正则化路径是一种多次求解多核学习,选择最优模型的措施。针对多核学习正则化路径算法处理大规模数据时,核矩阵规模较大,计算代价高,影响优化模型效率的问题,提出一种基于CUR矩阵分解的多核学习正则化路径近似算法(Multiple kernel learning regularization path approximation algorithm with CUR, MKLRPCUR)。该算法首先采用CUR算法获得核矩阵的低秩近似矩阵的多个分解矩阵,然后在求解过程中利用低维的分解矩阵相乘替代核矩阵,调整相关矩阵计算的顺序,从而简化算法中核矩阵和拉格朗日乘子向量乘积的计算。 MKLRPCUR算法降低了矩阵的计算规模,优化了矩阵计算,提高了精确算法的计算效率。 从理论上分析低秩近似矩阵的相对误差和算法的时间复杂度,验证了近似算法的合理性。同时,在UCI数据集、ORL和COIL图像数据库上的实验结果表明,本文提出的近似算法不仅保证了学习的准确率,并且降低了算法的运行时间,提高了模型的效率。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
    • 一种基于深度学习的半监督分层模型

      2020, 35(3):392-399. DOI: 10.16337/j.1004-9037.2020.03.002

      摘要 (364) HTML (1550) PDF 1.28 M (1553) 评论 (0) 收藏

      摘要:依照图像识别出的对象标签,通过层次结构来分类图像集是图像自动化分类的重要研究问题之一。现有的方法实现了对象标签已知情况下的层次结构构建,仅存在少量方法考虑部分对象标签未知的影响。本文对经典方法进行了扩展和优化,实现了存在部分对象标签未知情况下的层次结构构建和更新。利用卷积神经网络(Convolutional neural network, CNN)对图像编码,提出半监督学习方法,根据传统算法构建类标签已知图像集的层次结构,通过周期性相似性比较,对层次结构中标签未知图像进行聚类,实现对半监督分层模型(Semi-supervised layer-wise model,SLM)的构建。本文采用了真实公开的数据集,实验结果表明,该方法能够有效地实现层次结构的构建和更新,并且能够在较小规模的数据集上取得好的预测分类效果。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
    • 基于深度语义模型的乳腺X线图像检索

      2020, 35(3):400-410. DOI: 10.16337/j.1004-9037.2020.03.003

      摘要 (382) HTML (947) PDF 1.41 M (1512) 评论 (0) 收藏

      摘要:图像特征是基于内容的图像检索(Content-based image retrieval,CBIR)的关键,大部分使用的手工特征难以有效地表示乳腺肿块的特征,底层特征与高层语义之间存在语义鸿沟。为了提高CBIR的检索性能,本文采用深度学习来提取图像的高层语义特征。由于乳腺X线图像的深度卷积特征在空间和特征维度上存在一定的冗余和噪声,本文在词汇树和倒排文件的基础上,对深度特征的空间和语义进行优化,构建了两种不同的深度语义树。为了充分发挥深度卷积特征的识别能力,根据乳腺图像深度特征的局部特性对树节点的权重进行细化,提出了两种节点加权方法,得到了更好的检索结果。本文从乳腺X线图像数据库(Digital database for screening mammography, DDSM)中提取了2 200个感兴趣区域(Region of interest,ROIs)作为数据集,实验结果表明,该方法能够有效提高感兴趣肿块区域的检索精度和分类准确率,并且具有良好的可扩展性。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
    • 基于最优传输的多中心自闭症谱系障碍诊断

      2020, 35(3):411-419. DOI: 10.16337/j.1004-9037.2020.03.004

      摘要 (467) HTML (854) PDF 1.45 M (1999) 评论 (0) 收藏

      摘要:融合来自多个中心的医学数据能够增加样本数量,有助于研究自闭症谱系障碍(Autism spectrum disorder, ASD)的病理变化。因此,如何有效地利用多中心数据,提高对ASD诊断的准确性受到了越来越多的关注。然而,以往的大部分研究忽略了多中心数据的异质性(如受试者群体和扫描参数的不同),这可能会降低模型在多中心数据上对疾病诊断的性能。为了解决这一问题,提出一种基于联合分布最优传输(Joint distribution optimal transport, JDOT)的领域自适应模型鉴别ASD。选择一个中心作为目标域,其余的中心作为源域,假设两个域的联合特征、标签空间分布之间存在非线性映射,利用最优传输方法交替优化传输矩阵和分类器。结果表明,在多中心静息态功能磁共振成像(resting state functional magnetic resonance imaging, rs-fMRI)数据上,该模型能够有效提高对ASD鉴别的准确性。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
    • 边缘标记弱化的多标记特征选择算法

      2020, 35(3):420-430. DOI: 10.16337/j.1004-9037.2020.03.005

      摘要 (447) HTML (1660) PDF 1.28 M (1533) 评论 (0) 收藏

      摘要:在多标记学习中,特征选择是处理数据高维问题和提升分类性能的一种有效手段,然而现有特征选择算法大多是基于标记分布大致平衡这一假设,鲜有考虑标记分布不平衡的问题。针对这一问题,本文提出了一种边缘标记弱化的多标记特征选择算法(Multi-label feature selection algorithm with weakening marginal labels,WML),计算不同标记下正负标记的频数比率作为该标记的权值,然后通过赋权方式弱化边缘标记,将标记空间信息融入到特征选择的过程中,得到一组更为高效的特征序列,提升标记对样本描述的精确性。在多个数据集上的实验结果表明,本文算法具有一定优势,通过稳定性分析和统计假设检验进一步证明本文算法的有效性和合理性。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
    • 融合数据分布特征的保序学习机

      2020, 35(3):431-440. DOI: 10.16337/j.1004-9037.2020.03.006

      摘要 (433) HTML (1203) PDF 794.44 K (1261) 评论 (0) 收藏

      摘要:支持向量机(Support vector machine,SVM)作为一种经典的分类方法,已经广泛应用于各种领域中。然而,标准支持向量机在分类决策中面临以下问题:(1)未考虑分类数据的分布特征;(2)忽略了样本类别间的相对关系;(3)无法解决大规模分类问题。鉴于此,提出融合数据分布特征的保序学习机(Rank preservation learning machine based on data distribution fusion, RPLM-DDF)。该方法通过引入类内离散度表征数据的分布特征;通过各类样本数据中心位置相对不变保证全局样本顺序不变;通过建立所提方法和核心向量机对偶形式的等价性解决了大规模分类问题。在人工数据集、中小规模数据集和大规模数据集上的比较实验验证所提方法的有效性。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
    • 基于信息修正的深度残差学习

      2020, 35(3):441-448. DOI: 10.16337/j.1004-9037.2020.03.007

      摘要 (396) HTML (1107) PDF 1.74 M (1540) 评论 (0) 收藏

      摘要:提出了一种新的深度残差网络的拓展模块,有效提高了学习表示的鲁棒性。所提出的方法是一个简单的即插即用模块,即组卷积式编码-解码结构,它可以作为一个额外的信息过滤部件集成到原来的深度残差网络中。利用编码器的下采样来产生信息压缩过的特征图,解码器模块被驱动以产生激活准确的特征图,其能够突出显示输入图片中最具有判别力的区域,最后通过元素级相加和激活操作对输入特征进行信息修正。为了使设计的模型计算更加高效,通过减少残差分支的通道数来探究其轻量级版本的表现,发现并没有明显的性能下降现象。在各种基于残差网络的架构上进行实验,获得了一致性的性能提高,而且付出的计算代价与原始版本相比差别不大,甚至还低。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
    • 基于短语成分表示的中文关系抽取

      2020, 35(3):449-457. DOI: 10.16337/j.1004-9037.2020.03.008

      摘要 (419) HTML (1409) PDF 909.47 K (1581) 评论 (0) 收藏

      摘要:关系抽取是自然语言处理的重要研究内容,短语成分结构则是学界普遍认为能对关系抽取有重要影响的特征信息。然而目前短语成分应用于关系抽取任务时没有明显效果。这主要有两个原因:短语成分分析模型的泛化能力较差,会在关系抽取上造成错误传播,从而影响了它对关系抽取的有效性;关系抽取任务上使用短语成分特征的方式存在缺陷,即丧失短语成分分析学习到的句子结构信息,或者加大其对关系抽取的错误影响。本文在提升短语成分分析效果的基础上,提出了基于短语成分表示的中文关系抽取方法。该方法将短语成分分析模型学习到的文本表示嵌入到关系抽取模型中,从而提升关系抽取的性能。本文在公开的中文关系抽取数据集上验证了该方法的有效性。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
    • 基于统计特征的Quality Phrase挖掘方法

      2020, 35(3):458-473. DOI: 10.16337/j.1004-9037.2020.03.009

      摘要 (395) HTML (2138) PDF 1.60 M (1504) 评论 (0) 收藏

      摘要:Quality Phrase挖掘是从文本语料库中提取有意义短语的过程,是文档摘要、信息检索等任务的基础。然而现有的无监督短语挖掘方法存在候选短语质量不高、Quality Phrase的特征权重平均分配的问题。本文提出基于统计特征的Quality Phrase挖掘方法,将频繁N-Gram挖掘、多词短语组合性约束及单词短语拼写检查相结合,保证了候选短语的质量;引入公共知识库对候选短语添加类别标签,实现了Quality Phrase特征权重的分配,并考虑特征之间相互影响设置惩罚因子调整权重比例;按照候选短语的特征加权函数得分排序,提取Quality Phrase。实验结果表明,基于统计特征的Quality Phrase挖掘方法明显提高了短语挖掘的精度,与最优的无监督短语挖掘方法相比,精确率、召回率及F1-Score分别提升了5.97%,1.77%和4.02%。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
    • 基于深度学习的显著区域提取方法

      2020, 35(3):474-482. DOI: 10.16337/j.1004-9037.2020.03.010

      摘要 (386) HTML (1559) PDF 1.29 M (1738) 评论 (0) 收藏

      摘要:目前显著区域提取方法通常会设计多个复杂的网络结构,导致计算和存储代价较高。深度学习网络本身具有多尺度的特点,不同的卷积层特征具有不同的空间分辨率,可以避免复杂网络结构的设计。基于此,本文设计了一种新颖的基于深度学习的显著性检测网络,既考虑了特征的多尺度特点,又考虑了图像中显著区域的大小对显著区域检测结果的影响。实验中以流行的基准数据集作为实验对象,结果证明了本文方法的优越性能。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
    • 基于图嵌入模型的协同过滤推荐算法

      2020, 35(3):483-493. DOI: 10.16337/j.1004-9037.2020.03.011

      摘要 (637) HTML (1583) PDF 912.22 K (2000) 评论 (0) 收藏

      摘要:传统协同过滤算法存在严重的数据稀疏和冷启动问题。利用社交网络中的丰富信息为解决传统协同过滤算法的数据稀疏和冷启动带来了契机。然而,传统基于社交网络的协同过滤算法仅利用粗粒度、稀疏的用户信任关系来改进传统协同过滤算法,即用0或1表示用户之间信任程度。另外,传统基于社交网络推荐算法仅仅集成用户之间显式信任关系,而忽略用户之间隐式的信任关系。本文提出一种基于图嵌入模型的协同过滤推荐算法,即利用图嵌入模型技术学习社交网络中用户的低维特征表示,并根据用户的低维特征表示推导用户之间细粒度的信任关系。最后,根据信任用户和相似用户对目标物品的评分权重预测用户对目标物品的评分。在真实数据集上的实验结果表明,基于图嵌入模型的协同过滤算法的性能优于传统的协同过滤算法。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
    • 基于深度学习的木材缺陷图像的识别与定位

      2020, 35(3):494-505. DOI: 10.16337/j.1004-9037.2020.03.012

      摘要 (610) HTML (688) PDF 2.15 M (2084) 评论 (0) 收藏

      摘要:传统的木材缺陷定位方法主要有物理设备检测和传统计算机技术检测,但这两种方法均存在数据收集困难、高度依赖数据本身等问题,不适用于实际生产。本文提出一种基于深度学习的自动缺陷定位模型(Automatic defect location model, ADLM),包含单缺陷定位模型(Single defect location model, SDLM)与多缺陷定位模型(Multi-defect location model, MDLM),满足不同需求。模型使用MobileNet作为骨干网,只需少量数据集进行训练。在公开数据集Wood Defect Database中,该模型可获得86.1%的缺陷识别率。在单缺陷数据集中,该模型可获得97.5%的定位精确率。在多缺陷数据集中,该模型可获得90.0%的定位精确率。与传统的木材缺陷识别模型相比,基于深度学习的自动缺陷定位模型无须前期人工提取特征,具有检测速度更快、精准度更高以及适用性更广等优点。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
    • 融合模糊聚类的蚁群图像增强算法

      2020, 35(3):506-515. DOI: 10.16337/j.1004-9037.2020.03.013

      摘要 (505) HTML (583) PDF 2.19 M (1510) 评论 (0) 收藏

      摘要:为提高边缘检测精准度,保证图片分割后效率和效果,本文提出一种基于融合模糊聚类的蚁群图像增强算法。该算法利用分量灰度值、灰度梯度值和领域特征值进行图像特征提取,得到特征灰度图;然后使用模糊聚类算法对区域蚂蚁进行聚类以提高收敛速度;再采用蚁群算法进行图像边缘检测,检测过程中,使用路径选择策略对蚁群进行有序搜索,提高搜索效率,又根据信息素更新策略进行最优路径信息交流,以达到边缘点提取与检索目的;最后将检索所得灰度边缘图与原图进行重合,得到图像增强效果。实验结果表明,该改进算法在检索时间方面相较于传统蚁群算法提高了20.7%;在精度方面提高了14.8%,图片分割效果更好,纹理更清晰。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
    • 融合HOG特征的相关滤波视频跟踪

      2020, 35(3):516-525. DOI: 10.16337/j.1004-9037.2020.03.014

      摘要 (438) HTML (818) PDF 4.16 M (1567) 评论 (0) 收藏

      摘要:计算机视觉领域的目标跟踪已取得巨大进展,但在视频跟踪中,平面外旋转和形状变化的性能方面还有提升空间。本文提出一种基于方向梯度直方图HOG特征,结合图像灰度值把HOG特征加以融合和分解,以提升视频跟踪的变形和尺度变换的性能。首先提取目标区域的HOG的31维特征和灰度值;其次,将灰度值作为1维特征,与HOG特征融合成32维向量HOG32;进而将HOG32分解成2部分特征,分别为HOG1和HOG2;最后,通过对HOG1、HOG2和HOG32特征响应值的比较,选择最大值位置作为预测的下一帧的位置。实验在OTB-2013和OTB-2015这2个数据集上进行,与其他5个算法的比较结果表明,该方法在平面外旋转、变形、复杂背景等方面获得良好效果。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
    • 基于GHT的多目标检测自适应终止算法

      2020, 35(3):526-535. DOI: 10.16337/j.1004-9037.2020.03.015

      摘要 (576) HTML (1433) PDF 1.44 M (1425) 评论 (0) 收藏

      摘要:针对广义霍夫变换(Generalized Hough transform,GHT)在多目标检测时存在的难以自适应终止的问题,提出基于霍夫空间局部峰值变化率的GHT多目标检测自适应终止算法。该算法主要依据待检测图像的霍夫空间中目标区域的局部峰值之间差异较小,而有目标区域与无目标区域的局部峰值之间差异较大的规律,使得GHT类算法可以自适应终止。该算法的主要步骤为:首先通过GHT算法获得目标在原始图像中的累计匹配分布,并对分布结果进行降序排序,再根据累计峰值的平均变化率自适应地检测出多个目标识别结果,并终止算法。实验表明,相对于传统算法,该算法在没有明显增加算法复杂度的情况下,能够准确地检测出图像中存在的多目标信息,并且能够实现多目标检测算法的自适应终止。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
    • 信息增益混合邻域粗糙集的肺部肿瘤高维特征选择算法

      2020, 35(3):536-548. DOI: 10.16337/j.1004-9037.2020.03.016

      摘要 (429) HTML (737) PDF 1.56 M (1584) 评论 (0) 收藏

      摘要:针对冗余属性和不相关属性过多对肺部肿瘤诊断的影响以及Pawlak粗糙集只适合处理离散变量而导致原始信息大量丢失的问题,提出混合信息增益和邻域粗糙集的肺部肿瘤高维特征选择算法(Information gain-neighborhood rough set-support vector machine,IG-NRS-SVM)。该算法首先提取3 000例肺部肿瘤CT图像的104维特征构造决策信息表,借助信息增益结果选出高相关的特征子集,再通过邻域粗糙集剔除高冗余的属性,通过两次属性约简得到最优的特征子集,最后采用网格寻优算法优化的支持向量机构建分类识别模型进行肺部肿瘤良恶性的鉴别。从约简和分类识别两个角度验证方法的可行性与有效性,并与不约简算法、Pawlak粗糙集、信息增益和邻域粗糙集约简算法进行对比。结果表明混合算法精确度优于其他对比算法,精确度达到96.17%,并且有效降低了时间复杂度,对肺部肿瘤计算机辅助诊断具有一定的参考价值。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
    • 基于耦合度量的多尺度聚类挖掘方法

      2020, 35(3):549-562. DOI: 10.16337/j.1004-9037.2020.03.017

      摘要 (473) HTML (1051) PDF 686.23 K (1304) 评论 (0) 收藏

      摘要:为了能够更好地对非独立同分布的多尺度分类型数据集进行研究,基于无监督耦合度量相似性方法,提出针对非独立同分布的分类属性型数据集的多尺度聚类挖掘算法。首先,对基准尺度数据集进行基于耦合度量的基准尺度聚类;其次,提出基于单链的尺度上推和基于Lanczos核的尺度下推尺度转换算法;最后,利用公用数据集以及H省真实数据集进行实验验证。将耦合度量相似性(Couple metric similarity, CMS)、逆发生频率(Inverse occurrence frequency, IOF)、汉明距离(Hamming distance, HM)等方法与谱聚类结合作为对比算法,结果表明,尺度上推算法与对比算法相比,NMI值平均提高13.1%,MSE值平均减小0.827,F-score值平均提高12.8%;尺度下推算法NMI值平均提高19.2%,MSE值平均减小0.028,F-score值平均提高15.5%。实验结果表明,所提出的算法具有有效性和可行性。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
    • 基于改进RetinaNet模型的接触网鸟巢检测

      2020, 35(3):563-571. DOI: 10.16337/j.1004-9037.2020.03.018

      摘要 (592) HTML (1790) PDF 2.54 M (1668) 评论 (0) 收藏

      摘要:鸟类活动故障已经成为高速铁路的主要隐患之一,找出和清理接触网的鸟巢是一种应对手段。传统的鸟巢目标检测方法需要人工提取特征,而手工设计的特征难以在复杂的接触网场景中保证泛化能力。针对该问题,本文提出使用基于深度学习的目标检测算法识别接触网鸟巢,并提出一种基于一阶段目标检测模型RetinaNet的改进模型,增加P2特征层,扩充网络的感受野范围,以更好地检测出目标较小的鸟巢。最后使用高铁车载设备的数据集对基于深度学习的目标检测算法进行了训练和测试。实验结果表明:基于深度学习的目标检测算法在接触网鸟巢检测任务上表现优秀,且改进RetinaNet模型的mAP值达到了90.4%,优于原模型,对于高速铁路的避障任务具有参考和应用价值.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
    • 基于多层集成学习的岩性识别方法

      2020, 35(3):572-581. DOI: 10.16337/j.1004-9037.2020.03.019

      摘要 (966) HTML (1445) PDF 1.25 M (2142) 评论 (0) 收藏

      摘要:岩性识别是油藏地质解释中的关键问题和难点问题,人工智能特别是机器学习技术的发展和应用为岩性识别问题解决提供了新的技术途径。本文利用支持向量机(Support vector machine,SVM)、多粒度级联森林(Multi-grained cascade forest,GCForest)、随机森林(Random forest,RF)以及XGBoost(eXtreme gradient boosting)等机器学习模型建立一个异构多层集成学习模型,该集成学习模型克服了单一模型对数据集要求高、泛化能力差以及识别精度低等缺点。本文分别利用集成模型和单一模型进行了岩性识别实验。实验结果表明,本文集成模型在岩性分类测试集上平均精度达到96.66%,高于SVM的平均精度75.53%、GCForest的平均精度96.21%、随机森林的平均精度95.06%和XGBoost的平均精度95.77%。该集成模型能有效地用于油藏地质分析中的岩性识别和分类任务,适应性强,识别精度高。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
    • 基于神经网络的中文谓语动词识别研究

      2020, 35(3):582-590. DOI: 10.16337/j.1004-9037.2020.03.020

      摘要 (655) HTML (585) PDF 1.01 M (1664) 评论 (0) 收藏

      摘要:识别谓语动词是理解句子的关键。由于中文谓语动词结构复杂、使用灵活、形式多变,识别谓语动词在中文自然语言处理中是一项具有挑战的任务。本文从信息抽取角度,介绍了与中文谓语动词识别相关的概念,提出了一种针对中文谓语动词标注方法。在此基础上,研究了一种基于Attentional-BiLSTM-CRF神经网络的中文谓语动词识别方法。该方法通过双向递归神经网络获取句子内部的依赖关系,然后用注意力机制建模句子的焦点角色。最后通过条件随机场(Conditional random field, CRF)层返回一条最大化的标注路径。此外,为解决谓语动词输出唯一性的问题,提出了一种基于卷积神经网络的谓语动词唯一性识别模型。通过实验,该算法超出传统的序列标注模型CRF,在本文标注的中文谓语动词数据上到达76.75%的F值。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
快速检索
检索项
检索词
卷期检索