2014, 29(1):11-18.
摘要:传统的非负矩阵分解方法没有充分利用数据间的内在相似性,从而影响了算法的性能。为此,本文提出一种潜在信息约束的非负矩阵分解方法。该方法首先利用迭代最近邻方法挖掘原始数据的潜在信息,然后利用潜在信息构造数据之间的相似图,最后将相似图作为约束项求得非负矩阵的最优分解。相似图的约束使得非负矩阵分解在降维过程中保持了原始数据之间的相似性关系,进而提高了非负矩阵分解的判别能力。图像聚类实验结果表明了该方法的有效性。
2014, 29(1):19-29.
摘要:单词嵌入是指运用机器学习的方法,将位于高维离散空间(维数为词典单词数目)中的每个单词映射到低维连续空间的实数向量的技术。在很多文本处理的任务中,单词嵌入提供了更好的语义级别的单词特征表示,从而为文本处理任务带来了诸多便利。同时,大数据时代海量的未标注文本数据,以及以深度学习为代表的机器学习技术的发展使高效的单词嵌入技术成为可能。本文将给出单词嵌入的定义以及实际意义,同时将综述目前单词嵌入技术的几种典型方法,包括基于神经网络的方法、基于受限玻尔兹曼机的方法以及基于单词与上下文共生矩阵分解的方法。本文将详细介绍不同模型的数学定义、物理意义以及训练方法,并给出他们之间的比较。
2014, 29(1):30-35.
摘要:TV-Wavelet-L1(TVWL1)模型因包含全变分(Total-variation,TV)和小波正则化约束,具有较强的图像重建能力。而传统求解TVWL1模型的算法往往忽略了综合/分析稀疏表示方法的方式。本文提出了一个新的求解TVWL1模型的图像重建算法,该算法把图像重建问题分解为几个子问题并交替求解,利用分析稀疏表示特性构建子问题的求解算法。实验结果表明,与已有算法相比,本文提出的算法可以提高重建图像主客观质量。
2014, 29(1):36-42.
摘要:提出一种集成超分辨率重建的图像压缩编码新型框架。在编码端对输入图像以因子2进行下采样,对下采样图像用JPEG标准编解码,而后采用事先通过外部训练库训练得到的字典,对解码后的图像进行基于学习的超分辨率重建。为了进一步提高解码重建图像质量,在算法框架中设计了反馈环节,即在编码端用原始图像减去超分辨率重建图像得到残差辅助图像,在解码端用该残差辅助图像弥补在超分辨率图像重建环节中损失的高频细节信息,在保证残差辅助图像较低编码比特率的情况下,大幅度提高了解码重建图像质量。此外,还实现了框架图像编码控制量化参数的单一化,实用性较强。实验结果表明,算法较JPEG标准在相同峰值信噪比的情况下,编码比特率大幅度降低,压缩倍数提高较多。
2014, 29(1):43-53.
摘要:通过优化投影矩阵的结构可提高压缩感知(Compressed sensing,CS)的重构性能及信号适应的稀疏度范围。该类方法利用迭代更新Gram矩阵使CS投影矩阵逼近最优结构,不同于以往的投影矩阵设计问题,它是一类新的改进CS性能方法。本文阐述了该问题的产生起源、理论基础、目标函数、理想模型以及与编码理论的交叉。在此基础上,分析、总结和比较现有投影矩阵优化方法的构造原理、应用特点以及存在的问题,最后讨论了其未来可能的发展方向。实验结果验证了分析结论的正确性。
2014, 29(1):54-59.
摘要:二维条码作为一种重要的自动识别技术,有极大的商用前景。有效地解决二维条码图像模糊问题是其能够得以广泛应用的关键。针对条码识别中的常见3类模糊函数,设计了一个基于不变矩的辨识方法。文中分析了不同的模糊类型的频域图像的差异。经过边缘检测和去噪音的预处理后,对图像进行二值化,并提取矩特征进行辨识。最终实验表明本文设计的算法具有很好的识别率。
2014, 29(1):60-65.
摘要:高分辨率遥感图像中飞机目标的检测和识别具有重要的军事和民用价值,针对以往方法易受灰度分布和形态变化及伪装干扰等缺点,提出一种基于视觉词袋模型的高分辨率遥感图像飞机目标检测的新方法。为了精简飞机视觉码本得到最具鉴别力的视觉单词,结合相关性及冗余度分析去除视觉码本中不相关、弱相关以及冗余的视觉单词,选择对飞机目标检测最为重要的视觉单词,减少了计算复杂度,提高了算法的检测性能。
2014, 29(1):66-70.
摘要:超声弹性成像已经成为一种有效的医疗诊断工具,在成像过程中由于信号幅度的波动、压缩前后信号的解相关“误差”等原因,导致运动位移估计存在误差,这种误差在弹性图像中表现为伪影噪声,降低了弹性成像的图像质量,给诊断带来了不利影响。本文研究了一种空间位移复合的方法来校正位移估计,以达到抑制伪影噪声的目的。本文在原理上说明了这种方法的正确性,实验结果表明了该方法的有效性, 信噪比和对比度信噪比的提高也证明了这一点。
2014, 29(1):71-75.
摘要:针对在文本分类中先验概率的计算比较费时而且对分类效果影响不大、后验概率的精度损失影响分类准确率的现象,对经典朴素贝叶斯分类算法进行了改进,提出了一种“先抑后扬”(抑制先验概率的作用,扩大后验概率的影响)的文本分类算法。算法中去掉了对先验概率的计算,并在后验概率的计算中引入了一个放大系数。实验结果表明,分类时不计算先验概率对分类精度影响甚微但可以明显加快分类的速度,在后验概率的计算中引入放大系数减少了误差传播的影响,提高了分类精度。
2014, 29(1):76-82.
摘要:前景图像的后期美化和去噪处理一直是模式识别和计算机视觉等领域的一个重要研究环节。鉴于形态学后期处理方法容易造成前景目标几何和尺寸的变形现象,本文根据真实前景目标和噪声在前景图像空间分布和像素值的统计特性提出了一种分层筛选独立分离块的前景图像后期去噪方法。该方法包括划分单元块,构造独立分离块,计算独立分离块面积和去除噪声块四个步骤。实验结果表明,本文提出的方法能够有效地去除噪声,且与形态学图像后期处理方法相比有更好的去噪效果和更低的时间复杂度。
2014, 29(1):83-89.
摘要:在高维的基因表达谱数据中,只有少量基因对分类诊断其作用,而且还存在大量冗余的与癌症分类诊断无关的噪声基因,这些都会导致分类性能的下降。通过基因选择选取与分类紧密关联的基因,不仅能够剔除与疾病无关的基因,减少机器学习算法的时间复杂度和空间复杂度,提高分类的正确率,而且选出的特征基因可以作为肿瘤基因诊断和肿瘤药物治疗靶标确定的依据,降低后期生物学分析成本。本文提出一种基于聚类和粒子群算法(Particle swarm optimization,PSO)的基因选择方法,在PSO算法进行搜索之前,先对基因进行聚类,并对聚类结果进行选择,将被选中的簇的中心作为PSO的初始值,每个被选中的簇作为一个搜索空间,并利用极限学习机(Extreme learning machine,ELM)的分类精度作为特征选择的适应评价标准。该算法不仅有效地利用了聚类算法对基因进行初步归并的能力,也利用了PSO算法的全局优化能力,克服了传统PSO算法早熟、局部收敛速度慢的缺点,因此它能够高效地完成最优基因子集的确定,同时提高癌症分类正确率。
2014, 29(1):90-94.
摘要:扩散加权图像中的噪声为莱斯噪声并且图像本身含有丰富的边界信息,因而要求对DWI图像有效降噪的同时,能够较好地保留图像的边界信息。由于BEMD算法可将图像分解为细节图像及余项图像,其所分解的细节图像包括DWI图像的边界信息以及主噪声,而余项图像则描述图像的趋势信息。因此,提出一种将二维经验模态分解算法与改进的维纳滤波器相结合的降噪算法,并将该算法应用于DWI图像的降噪中。通过实验,将所提出的算法与其他算法应用于DWI图像的降噪处理,并通过对结果的分析比较证明所提出的算法能够更有效地对DWI图像进行降噪处理。
2014, 29(1):95-100.
摘要:传统基于成对区域的阴影检测方法在复杂纹理区域容易产生过分割现象,计算复杂度高,检测效果也受到了一定程度的影响。本文在原方法的基础上,提出利用聚类的方法对分割后的纹理区域重新进行合并,以减少过分割;同时根据成对分割区域的相关特性,构建支持向量机函数进行分类,以提高算法效率,改善阴影检测效果。仿真实验结果表明,与原方法相比,本文方法的检测效率大大提高,对复杂纹理图像的阴影检测结果也更加准确。
2014, 29(1):101-107.
摘要:支持感兴趣区域编码是SVAC标准的重要特性,感兴趣区域编码可以提高图像处理效率并能大大降低码率,但是码率依然会随编码帧的复杂度而波动,导致传输信道利用率较低。SVAC标准目前并没有推荐的码率控制算法。本文提出了一种基于SVAC感兴趣区域的码率控制算法:通过计算图像复杂度信息,对感兴趣区域与背景进行比特数分配,并将比特数优先分配给感兴趣区域;设计虚拟缓存器,通过计算缓存器的占有率实时调整每个编码帧感兴趣区域及背景的量化参数。实验结果表明,该算法将视频编码输出码率稳定在传输信道带宽内,提高了信道的利用率,并且保证了感兴趣区域具有平滑优质的图像质量。
2014, 29(1):108-115.
摘要:针对高分辨率遥感图像特点,提出了一种多特征融合的分类方法。该方法首先改进了原始的视觉词袋生成算法;然后,分别提取图像的视觉词袋局部特征、颜色直方图特征以及Gabor纹理特征;最后采用支持向量机进行分类,并对多特征分类结果进行自适应综合。采用一个具有2 100幅图像的大型遥感图像分类公共测试数据集进行分类实验,与仅用单一特征分类方法的最高分类精度相比,本文多特征融合的遥感影像分类方法总体平均分类精度提高了10%,表明本文提出方法是一种有效的高分辨率遥感图像分类方法
2014, 29(1):116-120.
摘要:数字图像取证中,目前的重采样检测算法都是检测图像中是否存在插值过程引入的周期性,而周期性的判定一般通过在频域的幅度谱中寻找峰值来进行,进而通过峰值的位置来计算重采样因子。但是由于重采样过程中的频率混叠问题导致了重采样因子不能完全确定。针对这个问题,本文提出一种时域中计算重采样因子的方法。重采样图像中每个像素行(或列)和相邻行(或列)的冗余性大小不同,并且冗余性大小呈现出周期性的分布。通过检测此特征就可以实现对重采样的取证,并且确定重采样因子。实验显示,在未压缩的图像中算法可以正确地估计出所有重采样因子,在压缩图像中本文的算法较之前的算法也有明显的优势。
2014, 29(1):121-125.
摘要:为解决经典证据理论无法处理高度冲突证据的不足,提出了一种基于距离测度的证据合成方法。将证据视为空间向量,定义距离测度空间,计算空间中两两证据之间的距离,并通过距离测度矩阵确立证据之间的一致性测度,在此基础上求得辨识框架对各证据的支持度,通过归一化支持度得到证据一致性因子,以此作为冲突概率的分配权重,最后给出改进的证据合成公式。数值算例证明了改进公式既能处理冲突证据,又能合成非冲突证据,与其他合成方法的比较验证了改进合成公式的有效性。
2014, 29(1):126-133.
摘要:视频拼接技术是计算机图形学和计算机视觉的重要分支,它的发展基于静态图像的拼接技术,但由于视频信息的复杂性,视频拼接也有区别于图像拼接,针对实际运用中的实时拼接的需要,本文提出了一种基于控制帧的固定摄像头视频拼接方法。首先采集控制帧图像,对摄像头进行参数标定获得相机内参和光心坐标,再使用一种改进的畸变矫正方法去除摄像头畸变带来的成像失真。然后对控制帧图像进行SIFT特征提取并进行粗匹配,再用RANSAC的方法剔除误匹配点并拟合出图像变换单应阵。最后使用查表法将各摄像头的图像同步投影到大场景图片上,对重合区域进行光亮补偿和多带融合。最终实现速度可达25帧/秒的实时视频拼接。
2014, 29(1):134-140.
摘要:针对肺部图像边缘检测中存在的噪声问题,在数学形态学边缘检测的基础上做了3点改进:(1)结合结构元素3个基本选取原则,即形状的相似性、尺寸的覆盖性和不同结构元素的组合性,选取适合肺部图像的全方位结构元和多尺度结构元;(2)改进了普通的形态学边缘检测算子,将全方位结构元和多尺度结构元相结合,得到适用于肺部图像的新型复合形态学边缘检测算子;(3)将峰值信噪比(Peak signal-to-noise ratio, PSNR)加入权值计算方法中,改进了权值的计算方法。最后通过仿真实验,对PSNR为50684 9 dB的肺部噪声图像进行边缘检测,并与一般算法进行比较,结果表明改进算法在PSNR和均方误差(Mean square error, MSE)上均有明显改善,能够检测出更清晰、去噪效果更好的肺部图像边缘。应用于其他图像或加入不同噪声时,本文算法也能检测出更清晰的图像边缘,表明该算法具有很好的鲁棒性。
2014, 29(1):141-145.
摘要:核小体预测是目前遗传学研究的重要内容,但现有的预测算法大部分仅依据核小体的统计特性,定位准确性很受局限。另一方面,经研究发现,DNA连接序列作为两个核小体的连接纽带,存在一定的统计特性。基于此事实,本文对Segal模型做了改进,通过核小体和连接序列的二核苷酸位置频率建立了核小体和连接序列两组得分函数,并以其差值作为核小体的定位依据。利用该算法模型对酵母染色体中核小体进行定位预测,发现定位准确性得到明显提高。
2014, 29(1):146-151.
摘要:利用模糊支持向量机进行路面不平度识别。针对支持向量机对样本中的噪声点和野值点特别敏感的缺点,采用将样本到类中心的距离作为样本的模糊隶属度,并结合改进的粒子群算法对模糊支持向量机的参数进行优化。通过对实验数据的训练和测试,该方法的最高平均识别率提高到了77.5%,高于一般支持向量机的72.5%的识别率。数据处理表明模糊隶属度的引入强化了有效样本对分类的影响,减弱了噪声点和野值点对分类的影响,提高了路面不平度识别率。
2014, 29(1):152-156.
摘要:对于机场噪声的预测,针对绘制等值线方法预测成本高和误差较大的缺点,以及分类再回归 方法中分类时缺乏可指导性标准的问题,本文提出了基于支持向量机的先聚类、再回归的时间序列的预测方法。对机场噪声时间序列的先聚类再回归方法,采用常用k均值划分算法,利用聚类特点,将样本限定在同一类的范围内,再对同类样本进行回归预测。Housing及Laser generated data数据集上的实验表明,采用先聚类再回归方法得到的拟合值比直接回归方法得到的拟合值要精确。将该方法应用到北京某机场实测数据中,并与其他预测模型进行对比,准确度明显优于其他预测方法。
您是本站第 访问者
通信地址:南京市御道街29号 南京航空航天大学(明故宫校区)
邮编:210016 传真:025-84892742
电话:025-84892742 E-mail:sjcj@nuaa.edu.cn
技术支持:北京勤云科技发展有限公司
网站版权: © 《数据采集与处理》 编辑部