基于双向协同训练的PolSAR机场跑道半监督检测方法
DOI:
作者:
作者单位:

中国民航大学

作者简介:

通讯作者:

基金项目:


A Semi-Supervised PolSAR Runway Detection Method Based on Bidirectional Collaborative Training
Author:
Affiliation:

Civil Aviation University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,PolSAR)图像跑道检测中标注数据稀缺引发的模型表征能力退化问题,本文提出一种双向协同训练的半监督师生模型。特别是设计了一个助教模块,通过构建蒸馏损失和反馈损失进行模型联合训练,突破传统单向蒸馏的层级限制。助教模块通过对比模型间的推理结果反馈尚未完全挖掘的特征信息,并利用同级特征图生成方向性特征向量,构建方向性损失辅助学生模型高效训练。在美国UAVSAR数据集上的实验表明,在标注数据有限的条件下,本文方法达到83.11%的跑道区域检测精度,相比于Unet,D-Unet,Unet++系列模型分别提高了15.63%,6.46%和17.25%。

    Abstract:

    To mitigate the problem of diminished model representation capabilities stemming from the limited availability of labeled data in runway detection for polarimetric synthetic aperture radar (PolSAR) images, a bidirectional, collaborative, semi-supervised teacher-student model is introduced. Specifically, an assistant teacher module has been designed to facilitate joint model training through the construction of distillation and feedback losses, thus overcoming the hierarchical constraints of conventional unidirectional distillation. Feedback on the models' inference results is provided by the assistant teacher module to extract previously unexploited feature information. Furthermore, directional feature vectors are generated using peer-level feature maps, and a directional loss is constructed to aid in the efficient training of the student model. Experiments conducted on the U.S. UAVSAR dataset demonstrate that, under conditions of limited labeled data, the proposed method achieves a runway area detection accuracy of 83.11%, which represents improvements of 15.63%, 6.46%, and 17.25% compared to the Unet, D-Unet, and Unet++ models, respectively.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-02-24
  • 最后修改日期:2025-05-27
  • 录用日期:2025-05-29
  • 在线发布日期: