基于融合语义信息的上下文感知图像修复
DOI:
作者:
作者单位:

上海理工大学 光电信息与计算机工程学院

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目(61603255);上海市晨光计划项目(18CG52)资助


Context-aware image restoration based on fused semantic information
Author:
Affiliation:

School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology

Fund Project:

Supported by the National Natural Science Foundation of China under Grant No. 61603255, and by the Shanghai Morning Glory Program under Grant No. 18CG52.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    近年来,生成对抗网络广泛应用于图像修复领域并且取得了不错的效果。但是,当前的方法并没有考虑在高分辨率图像(512×512)中会产生模糊的结构以及纹理的问题,这些问题主要来源于缺乏有效特征信息。针对此问题,本文提出一种将图像特征与语义信息相结合的生成对抗网络。主要基于语义信息,提出一种上下文感知的图像修复模型,该模型自适应地将语义信息与图像特征融合,并且提出自适应卷积替代传统卷积,以及在解码器后增添一个多尺度上下文聚合模块来捕捉远距离信息来进行上下文推理。本文在Places2、CelebA-HQ、Paris Street View和Openlogo数据集上进行实验,实验结果表明在L1损失、峰值信噪比(PSNR)和结构相似度(SSIM)上本文所提出的方法与现有方法对比均有所提升。

    Abstract:

    In recent years, generative adversarial networks have been widely used in the field of image restoration and have achieved good results. However, current methods do not consider the problem of blurred structures and textures in high-resolution images (512×512), which mainly come from the lack of effective feature information. To address this problem, this paper proposes a generative adversarial network that combines image features with semantic information. Based mainly on semantic information, a context-aware image restoration model is proposed, which adaptively fuses semantic information with image features, and adaptive convolution is proposed to replace the traditional convolution, as well as a multi-scale context aggregation module is added after the decoder to capture long-distance information for contextual inference. Experiments are conducted on Places2, CelebA-HQ, Paris Street View, and Openlogo datasets, and the experimental results show that the proposed method in this paper improves in terms of L1 loss, Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity (SSIM) in comparison with existing methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-05-11
  • 最后修改日期:2024-10-26
  • 录用日期:2024-10-26
  • 在线发布日期: