基于迁移学习卷积记忆网络的多声音事件检测
DOI:
作者:
作者单位:

四川大学电子信息学院

作者简介:

通讯作者:

基金项目:


Polyphonic sound event detection based on transfer learning convolutional retentive network
Author:
Affiliation:

School of Electronic and Information Engineering, Sichuan University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对多声音事件检测任务中强标注数据集有限、真实场景下检测性能急剧恶化的问题,提出了基于迁移学习卷积记忆网络的多声音事件检测方法. 首先,该方法使用带有预训练权重的卷积块提取音频数据的局部特征,再将局部特征和方位特征一并送入残差特征增强模块进行特征融合和通道降维处理. 接着将提取到的融合特征送入采用正则化方法的记忆网络,以进一步学习音频数据中的时序信息. 实验结果显示,与DCASE挑战赛冠军系统模型相比,该方法在DCASE 2016 Task3数据集的开发集和评估集上,错误率分别降低了0.277和0.106,F1分数分别提高了22.6%和6.6%;在DCASE 2017 Task3数据集的开发集和评估集上,错误率分别降低了0.22和0.123,F1分数分别提高了17.2%和14.4%.

    Abstract:

    Aiming at the problem of limited strong annotation datasets and the sharp degradation of detection performance in real-world scenarios for polyphonic sound event detection tasks, a method for polyphonic sound event detection based on transfer learning convolutional retentive network is proposed. Firstly, the method utilizes convolutional blocks with pre-trained weights to extract local features of audio data. Subsequently, the local features, along with orientation features, are input into the residual feature enhancement module for feature fusion and channel dimension reduction. The fused features are then fed into the retentive network with regularization methods to further learn the temporal information in the audio data. Experimental results demonstrate that, compared to the champion system model of the DCASE challenge, the method achieves a reduction in error rates by 0.277 and 0.106, and an increase in F1 scores by 22.6% and 6.6% on the development and evaluation sets of the DCASE 2016 Task3 dataset. On the development and evaluation sets of the DCASE 2017 Task3 dataset, the error rates are reduced by 0.22 and 0.123, and the F1 scores increase by 17.2% and 14.4%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-01-30
  • 最后修改日期:2024-03-19
  • 录用日期:2024-09-06
  • 在线发布日期: