非均衡IPTV数据集下的用户报障预测
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Prediction for User′s Complaint in Imbalanced IPTV Dataset
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对传统算法在非均衡交互式网络电视(Internet protocol television,IPTV)数据集下用户报障预测效果不理想的问题,本文将影响网络服务质量(Quality of service,QoS)的传统网络参数和主观反映用户体验质量(Quality of experience,QoE)的MOS评分结合来预测用户是否报障。本文在已有的ODR-BSMOTE-SVM 算法基础上,针对过采样算法产生噪声以及核参数没有进行优化的缺陷,提出了一种改进型算法。该改进算法首先采用欠采样、过采样算法及数据清洗算法对原始非均衡数据进行处理,然后通过自适应变核参数寻找近似最优值,最终实现提升分类效果。实验结果表明,较传统标准支持向量机(Support vector machine, SVM)算法和ODR-BSMOTE-SVM 算法,本文算法能获得更佳的预测效果。

    Abstract:

    In the imbalanced internet protocol television(IPTV) dataset, the traditional algorithm performs not well in terms of predicting the user′s complaint. For this problem, this paper combines traditional network parameters that influence the network quality of service (QoS) with MOS score that objectively reflects the quality of experience (QoE) to predict user′s complaint. And then we propose an improved algorithm based on the existing ODR-BSMOTE-SVM algorithm for the defects that the over-sampling algorithm will produce noise and there is not any optimization for kernel parameters. In the improved algorithm, under-sampling algorithm, over-sampling algorithm and data cleaning algorithm are firstly used to process the original imbalanced dataset. Then, through searching for the approximate optimal value by adaptive variable kernel parameters, the classification effect is ultimately improved. Experimental results show that the improved algorithm performs better than the traditional standard support vector machine (SVM) and the ODR-BSMOTE-SVM algorithm in predicting user′s complaint.

    参考文献
    相似文献
    引证文献
引用本文

吴志峰 黄若尘 魏昕 黄荣谞 周亮.非均衡IPTV数据集下的用户报障预测[J].数据采集与处理,2018,33(1):75-84

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-09