基于快速l1算法和LBP算法的木材缺陷识别
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Automatic Wood Defect Recogniti on Based on Fast l1-Minimization Algorithm and LBP Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    快速l1最小化算法是一种关于求解稀疏矩阵的算法,相对于传统的主成分分析l2范数,l1范数只需要计算图像主要特征的稀疏矩阵,对噪声和异常项具有更好的鲁棒性,且在木材识别领域使用较少。局部二元模式(Local binary pattern,LBP) 是一种描述灰度范围纹理的算法,对于图像特征的描述有显著的效果。本文利用LBP提取不同木材截面RGB图像 三层纹理的特征,用l1算法对特征矩阵进行快速、准确的匹配,检测出是否有缺陷,同时通过图像分块定位缺陷的位置坐标。实验表明快速l1算法结合LBP算子对木材缺陷定位正确率达到0.9 31。

    Abstract:

    l1-minimization algorithm is one of the hot topics in the signal processing and optimization communities in solving the sparsest matrix. Compared with the traditional principal component analysis using l2 norm, the l1 norm only calculates the main characteristics matrix of the image, which is more robust to noise and abnormal data. While it is used too few in wood identification. The local binary pattern (LBP) texture analysis operator is defined as a gray-scale invariant texture measure. LBP algorithm is important in view point of pattern classification, and can be used to extract three-layer cross-sectional features of different wood RGB images data. And then a fast l1 norm algorithm is used to implement fast and accurate identification to judge whether the wood surface has defects or not, and where defects locate. Many experiments indicte that fast l1 algorithm combined with LBP can get correction of 0.931 for defect location in wood surface.

    参考文献
    相似文献
    引证文献
引用本文

熊伟俊 杨绪兵 云挺 朱正礼.基于快速l1算法和LBP算法的木材缺陷识别[J].数据采集与处理,2017,32(6):1223-1231

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-10