基于NMF后验特征优化的语音查询样例检测
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Posteriorgram Features Optimization for Query-by-Example Spoken Term Detection Based on NMF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    提出一种基于非负矩阵分解(Nonnegative matrix factorization, NMF)后验特征优化和修正分段动态时间规整(Segmental dynamic time warping, SDTW) 检索的无监督语音查询样例检测方法。该方法首先应用频域线性预测(Frequency domain linear prediction, FDLP)声学特征参数代替梅尔频率倒谱系数(Mel-frequency cepstral coefficients, MFCCs)训练高斯混合模型(Gaussian mixture model, GMM)模型,然后使用NMF算法对高斯后验特征矩阵进行分解,将得到的基矩阵作为子空间变换矩阵对原始后验特征投影,投影可以突出特征中主要分量,平滑距离矩阵。在检索阶段,使用多相邻输出得分对最佳匹配得分进行修正,用于代替标准SDTW算法的1-best输出得分。实验结果表明,在不增加检索时间的情况下,该方法相比应用MFCCs和FDLP特征的基线系统性能提升明显,检索精度分别相对提升了18.6%和18.1%。

    Abstract:

    This paper presents the study of posteriorgram features optimization based on nonnegative matrix factorization (NMF) algorithm and modified segmental dynamic time warping (SDTW) detection for unsupervised query-by-example spoken term detection. First, a Gaussian mixture model (GMM) is trained with frequency domain linear prediction (FDLP) acoustics feature parameters instead of Mel-frequency cepstral coefficients (MFCCs). Then the NMF algorithm is applied to the generated Gaussian posteriorgram matrix, and the derived base matrix is used as a subspace transform matrix for projection of raw feature. The projection can highlight the primary component of features and smooth the distance matrix. In the detecting phase, the best matching score is modified by using multi adjacent output scores, instead of the 1-best output score for normal SDTW. Experimental results show that without affecting detection time, the proposed method consistently outperforms the baseline systems with MFCCs and FDLP features with the detection precision improved by 18.6% and 18.1% respectively.

    参考文献
    相似文献
    引证文献
引用本文

曹建凯 张连海 李勃昊.基于NMF后验特征优化的语音查询样例检测[J].数据采集与处理,2017,32(6):1198-1207

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-10