日冕暗化图像检测算法的并行设计与实现
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Parallel Design and Implement of Coronal Dimming Detection Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    日冕物质抛射(Coronal mass ejection,CME)是空间灾害天气最主要的驱动源。在CME的众多伴生现象中,日冕暗化与之最为紧密相关。因此,对日冕暗化现象进行检测,有助于预报CME的爆发。随着观测数据量的增加,现有日冕暗化检测算法的效率亟待提升。本文基于一种半自动暗化检测算法,提出并实现该算法的并行方案,以提高算法效率,为实现日冕暗化的实时检测奠定基础。首先介绍了日冕暗化的现有工作,接着详细分析了一种半自动暗化检测方法,它在一定程度上提高了人工识别暗化区域的效率,但其效率并不能满足检测的实时性要求。然后,基于Matlab R2014a平台并行机制的特点,从数据、计算量和图像分块角度对半自动暗化检测算法提出了3种不同的并行方案,实验对比分析结果表明图像分块并行方案的效果最优。

    Abstract:

    Coronal mass ejection (CME) is considered to be the main driving force of space weather disasters. CME often appears with many other solar activities. Since coronal dimming is associated most closely with CME, the detection of coronal dimming can help to forecast CME. Continuous development of CME observations brings increasingly large amount of data, whereas the efficiency of the detection algorithms of coronal dimming needs to be improved. Three parallel algorithms are presented for a semi-automatic dimming detection algorithm. They make the foundation for real-time detection of coronal dimming. We firstly introduce the existing work about the topic, then analyze a semi-automatic dimming detection algorithm, which to some degree, improves the efficiency of artificial recognition of darkened area, but does not meet the requirements of real-time detection. Based on the principle of parallelism of Matlab R2014a, three different parallel algorithms are presented from different aspects, i.e. data, distance-calculation and image-divide. Experimental results show that the parallelization based on image-divide is the most efficient one among the three algorithms.

    参考文献
    相似文献
    引证文献
引用本文

杨宇航 彭博 李天瑞.日冕暗化图像检测算法的并行设计与实现[J].数据采集与处理,2017,32(6):1163-1168

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-10