基于非线性Volterra信道的复数神经多项式盲均衡算法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Nonlinear Volterra Channel Based Complex-Valued Neural Polynomial Blind Equalization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对传统常模算法收敛速度慢、均方误差大以及传统神经网络参数多、复杂度高的问题,提出了基于非线性Volterra信道的复数神经多项式盲均衡算法(Fuzzy neural network-complex valued neural polynomial-constant modulus algorithm,FNN-CNP-CMA)。该算法包含单层神经网络和非线性处理器的复数神经多项式,模块结构简单、复杂度低。由模糊神经网络(Fuzzy neural network, FNN)设计的模糊规则控制器能有效提高步长的控制精度。仿真实验结果表明,该算法系统结构简单、复杂度低、收敛速度快且稳态误差小,较好地解决了收敛速度与均方误差之间存在的矛盾。

    Abstract:

    Aiming at the low convergence rate and high mean square error of traditional constant modulus algorithm(CMA) and too many parameters and high complexity of traditional neural network, a complex neural polynomial blind equalization algorithm based on nonlinear Volterra channel is studied. In the studied algorithm, the complex-valued neural polynomial with a single layer neural network and nonlinear processor has very simple structure and low complexity. And the fuzzy rule controller based on fuzzy neural network (FNN) can effectively control the step-size of scale factor. The simulation results show that the proposed algorithm not only has simple structure, low complexity, fast convergence speed and small steady-state error, but also can solve the contradiction between convergence speed and mean square error.

    参考文献
    相似文献
    引证文献
引用本文

郭业才 郑梦含 张珊万逸儒.基于非线性Volterra信道的复数神经多项式盲均衡算法[J].数据采集与处理,2017,32(6):1082-1088

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-10