基于MTL-DNN系统融合的混合语言模型语音识别方法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Hybrid Language Model Speech Recognition Method Based on MTL-DNN System Combination
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于混合语言模型的语音识别系统虽然具有可以识别集外词的优点,但是集外词识别准确率远低于集内词。为了进一步提升混合语音识别系统的识别性能,本文提出了一种基于互补声学模型的多系统融合方法。首先,通过采用不同的声学建模单元,构建了两套基于隐马尔科夫模型和深层神经网络(Hidden Markov model and deep neural network, HMM-DNN)的混合语音识别系统;然后,针对这两种识别任务之间的关联性,采用多任务学习(Multi-task learning DNN, MTL-DNN)思想,实现DNN网络输入层和隐含层的共享,并通过联合训练提高建模精度。最后,采用ROVER(Recognizer output voting error reduction)方法对两套系统的输出结果进行融合。实验结果表明,相比于单任务学DNN(Single-task learning DNN, STL-DNN)建模方式,MTL-DNN可以获得更好的识别性能;将两个系统的输出进行融合,能够进一步降低词错误率。

    Abstract:

    Speech recognition system based on the hybrid language model has the advantage of recognizing the out-of-vocabulary (OOV) words, but the recognition accuracy of the OOVs is far below that of the in-vocabulary (IV) words. To further improve the performance of hybrid speech recognition, a system combination method based on complementary acoustic models is proposed in this paper. Firstly, two hybrid speech recognition systems based on hidden Markov model and deep neural network (HMM-DNN) are set up by using different acoustic modeling unites. Aiming at the relevance of these two recognition tasks, the thought of multi-task learning (MTL) is then used to share the input and hidden layers of DNN and improve the modeling accuracy by joint training. Finally, the outputs of two systems are combined with recognizer output voting error reduction (ROVER). Experimental results show that the MTL-DNN modeling method can obtain better recognition performance than the single-task learning DNN(STL-DNN) and the combining of the two systems can further reduce the final word error rates(WER).

    参考文献
    相似文献
    引证文献
引用本文

范正光 屈丹 李华 张文林.基于MTL-DNN系统融合的混合语言模型语音识别方法[J].数据采集与处理,2017,32(5):1012-1021

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-10