基于结构化噪声矩阵补全的WSNs收集数据重建方法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Data Reconstruction in WSNs via Matrix Completion with Structural Noise
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    许多科学研究都需要对环境数据进行分析,这些环境数据通常是通过部署在研究区域内的无线传感器网络(Wireless sensor networks, WSNs)来收集的。收集数据的完整性和准确性决定了科研结果的可靠性。然而,在数据收集过程中普遍存在的数据丢失和错误影响了收集数据的可用性,为此需要利用收集到的数据重建完整的环境数据。基于环境数据低秩特性,将数据重建问题建模为L2,1范数正则化矩阵补全模型,提出一种基于结构化噪声矩阵补全的WSNs收集数据重建方法(Data reconstruction approach via matrix completion with structural noise, DRMCSN)。真实数据集上的实验结果表明,该方法性能优于现有算法,不仅能以较高的精度恢复缺失的环境数据,而且能辨识出收集到错误数据的传感器节点。

    Abstract:

    Many scientific work needs to analyze the environmental data which are usually collected by wireless sensor networks(WSNs)deployed in research areas. The integrity and accuracy of the collected data determine the reliability of the research results. However, data loss and error usually occur during the process of data collection, which affect the availability of collected data. Therefore, it is necessary to reconstruct the environmental data from the incomplete and erroneous sensory data. Based on the low-rank feature of the environmental data, an efficient data reconstruction approach via matrix completion with structural noise (DRMCSN) is proposed by formulating data reconstruction problem as a L2,1-norm regularized matrix completion model. Finally, experimental results on a real dataset demonstrate that the proposed approach can not only effectively reconstruct the environmental data, but also recognize the sensor nodes that collect erroneous data.

    参考文献
    相似文献
    引证文献
引用本文

陈正宇 陈蕾 胡国兵 戴华.基于结构化噪声矩阵补全的WSNs收集数据重建方法[J].数据采集与处理,2017,32(5):939-947

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-10