强化狼群等级制度的灰狼优化算法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Grey Wolf Optimization Algorithm Based on Strengthening Hierarchy of Wolves
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对灰狼优化(Grey wolf optimization, GWO)算法在处理复杂优化问题时优化精度不高,易陷于局部最优等问题,提出了一种强化狼群等级制度的灰狼优化(GWO based on strengthening the hierarchy of wolves, GWOSH)算法。该算法为灰狼个体设置了跟随狩猎和自主探索两种狩猎模式,并根据自身等级情况来控制选择狼群的狩猎模式。在跟随狩猎模式中,灰狼个体以等级高于自身的灰狼的位置信息来指引自己到达最优解区域;而在自主探索模式中,灰狼个体会同时审视等级高于自身的灰狼的位置信息和自身位置信息,并基于这些信息自主判断猎物的位置,同时两种更新模式都将引入优胜劣汰选择规则来确保种群的狩猎方向。对12个基准测试函数进行优化的结果表明:与已有的算法相比,GWOSH算法的全局搜索能力更强,更能有效避免易早熟收敛的问题,更适用于求解高维的复杂优化问题。

    Abstract:

    Aiming at the low precision and local optima stagnation of the grey wolf optimization (GWO) algorithm in dealing with complex optimization problems, a grey wolf optimization algorithm based on strengthening the hierarchy of wolves(GWOSH) is proposed. The new algorithm provides two kinds of hunting-modes which are following hunting mode and self-exploration mode for each grey wolf, and each grey wolf chooses its hunting-mode according to the social hierarchy of their own. In the following hunting mode, the grey wolf only depends on the position of higher level wolves to guide itself to search the optimal area. In the self-exploration mode, the individuals will examine the location of the higher level grey wolf and its position at the same time, and judge the position of prey independently based on these information. In the two hunting-modes, a survival of the fittest selection rule is introduced to ensure the evolutionary direction of the population. The optimization results on 12 benchmark functions show that GWOSH has stronger global searching ability and is more effective in the premature convergence avoidance and more suitable for solving high-dimensional complex optimization problems compared with the available algorithms.

    参考文献
    相似文献
    引证文献
引用本文

张新明涂强康强程金凤.强化狼群等级制度的灰狼优化算法[J].数据采集与处理,2017,32(5):879-889

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-10