一种基于全相位预处理有效消除图像Gibbs伪迹的方法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Reduction of Gibbs Ringing Artifact Based on All-Phase Pre-processing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    经典傅氏重构是一种重要的信号处理方法,该方法对连续信号重构有很好的效果,但对有间断点的信号进行重构时就会产生Gibbs效应。Gibbs现象的存在使得重构信号在边缘处存在较大的失真,严重影响了图像质量。为此,提出了改进的二维全相位重构方法,在给定有限个离散傅里叶(Discrete fourier transform,DFT)系数的情况下,综合了更多的高次谐波信息,从而实现了高精度的重构间断信号。将该算法应用于重构磁共振成像(Magnetic resonance imaging,MRI)图像的实验结果表明:相比于传统的傅里叶变法,该重构算法可在不增加傅里叶系数的条件下同时有效减小图像的Gibbs效应,改善了重构图像的质量。

    Abstract:

    As an important tool of signal processing, classical Fourier reconstruction does well in reconstructing continuous signals, but it also suffers from Gibbs artifact for reconstruction of discontinuous signals. Since Gibbs artifact causes serious edge distortion and greatly degrades the quality of image, this paper presents an improved 2D all-phase Fourier reconstruction algorithm.The algorithm incorporates multiple higher-frequency harmonics with a limited number of discrete Fourier transform (DFT) coefficients, and therefore it can reconstruct discontinuous signals with higher precision. When the proposed algorithm is applied to magnetic resonance imaging (MRI) image reconstruction, experimental results show that, compared with the classical Fourier transform, the proposed algorithm can restrain Gibbs artifact more effectively and improve the quality of reconstructed images under the condition of the same amount of 2D Fourier coefficients.

    参考文献
    相似文献
    引证文献
引用本文

褚晶辉 王晓娜 黄翔东 吕卫.一种基于全相位预处理有效消除图像Gibbs伪迹的方法[J].数据采集与处理,2017,32(5):861-868

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-10