基于外观的复合属性学习的细粒度识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Appearance-based Complex-Attributes Learning for Fine-Grained Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    由于语义可理解性及共享性,视觉属性作为刻画对象的中间特征表示在众多领域得到了广泛应用。视觉属性学习中,大量的人工成本用于属性定义和标注,因此难以避免地引入了主观偏见,属性表示的类别判别性难以保证,尤其面临对判别性要求较高的细粒度识别任务时更为明显。复合属性符合人类认知规律以及对象复杂多模分布的事实,从刻画对象的分布入手,以较低廉的代价建立兼具一定描述能力及较好判别能力的特征表示,以应对细粒度识别任务对判别特征和判别模型的较高要求。在细粒度识别代表性公开数据集CUB上验证了所提方法的有效性。在细粒度识别任务中,复合属性表现出比人工定义的属性以及类别判别属性更优的性能。

    Abstract:

    Visual attribute as an inter-mediate representation is exploited in many applications due to its semantic understandable and generalization. However, attribute learning need great manual effort for choosing attribute taxonomy and labeling attributes instance, which inevitably introduces human bias and leads to weak discriminant ability of attributes, especially for fine-grained recognition where high discriminant ability is crucial for recognizing subtle distinctness. Motivated by human cognition and the fact of multi-mode distribution of object, the proposed complex attributes try to model the distribution of object explaining various appearance factors and finally forms a distributed representation with better describable and discriminant ability, which will competent for handling high discriminant requirement for fine-grained recognition. Some experiments are conducted on publicly available fine-grained datasets CUB. Results show it has better performance than the handcrafted attributes and also holds simple category discriminant attributes.

    参考文献
    相似文献
    引证文献
引用本文

宋凤义 胡太 杨明.基于外观的复合属性学习的细粒度识别[J].数据采集与处理,2016,31(6):1205-1212

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-09