基于多变量符号转移熵的癫痫脑电分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Epileptic EEG Based on Improved Multivariate Symbolic Transfer Entropy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    大脑神经元细胞群的异常同步放电是癫痫的病因,这种异常放电是目前诊断癫痫的重要依据。利用复杂度理 论来分析癫痫信号已经成为研究热点,而符号转移熵是反应系统混乱程度的一种非线性指标,在研究癫痫脑电信号特征的提取中有重要的作用。符号转移熵一般都是用来衡量两 个变量之间的动力学特征及方向性信息,忽略了多个变量之间相互作用。本文基于多变量符号转移熵研究分析了癫痫脑电信号,实验中将原始信号符号化后通过数值分析,对导联信号及信号长度的选取以及稳健性分析,表明该方法能够对正常人与癫痫病人的脑电信号进行显著区分,且该算法稳健可靠,该研究结果对临床辅助诊断有帮助。

    Abstract:

    Epilepsy is caused by abnormal synchronous discharge of neurons in the brain, which constructs the main basis of its diagnosis. The use of complexity theory to study the epileptic signal has become a hot spot. The symbolic transfer entropy as a reflection of the degree of chaos of nonlinear system of indicators can be used as a characteristic of epilepsy. It plays an increasingly important role in the study of epilepsy in electro encephalogram signals (EEG) feature extraction. But symbolic transfer entropy is generally used to measure the dynamic characteristics and directional information between two variables and ignores the interaction between multivariate. Epileptic EEG signals are analyzed based on multivariate symbol transfer entropy. By choosing the lead signal and the signal length to analyze the robustness, the method can be used to distinguish normal person and patients with epilepsy. It is proved that the algorithm is robust and reliable for clinical diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

刘倩倩戴加飞李锦王俊侯凤贞.基于多变量符号转移熵的癫痫脑电分析[J].数据采集与处理,2016,31(5):983-988

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-09