基于模型选择的差异基因和异构体检测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Differential Expression Analysis of Genes and Isoforms Based on Model Selection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基因和异构体差异表达分析是获取基因和异构体功能的重要途径,现已成为生物信息学的一个重要领域。RNA-seq是一种高通量测序技术,近年来广泛用于转录组研究。RNA-seq 数据的读段多源映射现象给差异异构体检测带来挑战。针对该问题,本文采用先计算基因和异构体的表达水平,再进行差异分析的方法,以计算表达水平的PGseq模型为基础,采用贝叶斯因子方法进行模型选择,提出一个新的差异检测方法PG_bayes,解决了基因和异构体两方面的差异检测问题。将PG_bayes应用于人类和小鼠共4个真实数据集中,并与目前流行的 差异检测方法进行对比。实验结果表明,PG_bayes方法在差异基因和差异异构体检测中具有较高的准确度和灵敏度,并且在差异异构体检测方面表现出优势。

    Abstract:

    Differential expression analysis of genes and isoforms is important in obtaining the function of genes and isoforms, thus becoming an essential research focus of bioinformatics. RNA-seq is a new experimental technique based on high-throughput sequencing and is increasingly used in transcriptome research. Read-isoform multi-mappings make it difficult to detect differential expression of isoforms. Here, we proposed a new method, called PG_bayes, to detect differential expression for both genes and isoforms. PG_bayes, based on expressions estimation method PGseq, uses a Bayes factor model selection method to detect differential expression. We applied PG_bayes to three human datasets and one mouse dataset, and compared its performance with popular alternatives. Results show that PG_bayes performs favorably in sensitivity and specificity at both gene and isoform levels.

    参考文献
    相似文献
    引证文献
引用本文

王黎黎 刘学军张礼.基于模型选择的差异基因和异构体检测[J].数据采集与处理,2016,31(5):965-973

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-09