摘要:提出了基于最优实验设计与Laplacian正则化的自适应小波神经网络(Wavelet neural network, WNN)的非线性预测控制算法。该方法迭代地从WNN隐含节点候选集选取隐含小波神经元,并使用扩展卡尔曼滤波(Extended Kalman filter, EKF)方法调整该节点参数。为了控制WNN的复杂度,提出采用Laplacian正则化和最优实验设计选择重要的WNN隐含节点,使用最小描述长度(Minimum description length, MDL)准则确定节点数量。使用在线基于Gustafson-kesscl(GK)的模糊满意聚类算法确定WNN初始参数值和权重更新策略,该策略具有直观性和物理意义。最后给出基于WNN线性化模型的预测函数控制方法。对工业焦化装置温度控制进行仿真,结果说明了算法的 有效性。