CT图像肺结节计算机辅助检测与诊断技术研究综述
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Reviews on Computer-Aided Detection and Diagnosis of Pulmonary Nodules in CT Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    肺结节计算机辅助诊断(Comput er-aided diagnosis,CAD)能够从CT图像中检测、分割和诊断肺结节,提高早期肺癌的生存率,因而具有重要临床意义。由于肺结节的形态根据其类型、尺寸、位置、内部结构及恶性与否等动态变化,导致肺结节检测和诊断已经成为一个重大的挑战问题。本文对比分析了CAD系统中肺实质分割、肺结节检测、肺结节分割以及肺结节良恶性判断等4个步骤所运用的关键技术及挑战,并指出开发有效CAD系统需要进一步优化不同类型结节诊断算法灵敏度、降低结节检测误报数量、提高诊断自动化水平,同时需要集成影像存储与通信系统(Picture archiving and communication systems, PACS)以及电子病历系统(Electronic medical record systems, EMRS),以便在日常临床实践中应用。

    Abstract:

    Computer-aided diagnosis (CAD) system can detect, segment and diagnose pulmonary nodules from CT images, and improve the survival rate of early lung cancer, which has important clinical significance. As the appearance of pulmonary nodules varies with its type, size, location, internal structure, and malignancy, nodule detection and diagnosis have become a major challenge . Here the key techniques and challenges are analyzed in four main processing stages: segmentation of lungs from chest images, detection of pulmonary nodules inside the lung fields, pulmonary nodule segmentation, and diagnosis of pulmonary nodules as benign or malignant. Further research is needed to optimize the diagnosis algorithm sensitivity of nodules with different sizes and shapes, thus decreasing the number of false positives, and improving automation level of diagnosis. Finally, the picture archiving and communication systems (PACS) should be integrated with electronic medical record systems (EMRS) in order to be adopted in clinical practice. 

    参考文献
    相似文献
    引证文献
引用本文

伍长荣接标叶明全. CT图像肺结节计算机辅助检测与诊断技术研究综述[J].数据采集与处理,2016,31(5):868-881

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-09