融合自动检错的单元挑选语音合成方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Unit Selection Speech Synthesis Integrating Automatic Error Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    提出了一种融合自动检错的单元挑选语音合成方法。本文方法旨在设计与主观听感更加一致的单 元挑选准则,以提高合成语音的自然度。首先利用众包网络平台快速大量地收集测听人对于合成语音的主观评价数据,取代了传统的利用具备语言学知识的专家收集主观评价数 据的方法;然后基于这些主观评价数据,提取对应语音的音节时长、单元代价以及声学参数距 离等特征,构建基于支持向量机的合成错误检测器;在合成阶段,该检测器被用来对传统单元 挑选输出的N条路径行重打分,以确定最优的单元挑选序列。倾向性测听结果表明本文方法可以有效地提高合成语音的自然度。

    Abstract:

    A unit selection speech synthesis method is presented using an automatic error detection. It aims to design a unit selection criterion consistent with the subjective perception of listeners so as to improve the naturalness of synthetic speech. Firstly, crowdsourcing platform, instead of linguistics experts in the traditional approach is facilitated to collect mass perceptual data efficiently. Then, a synthetic error detector based on a support vector machine(SVM) classifier is constructed based on speech features such as syllable duration, unit cost and acoustic parameters distance extracted from subjective evaluations. During speech synthesis, N-best unit selection results given by conventional unit selection algorithms are rescored by the trained synthetic error detector in order to select the optimal one. Preference test results show that the proposed method can effectively improve the naturalness of synthetic speech.

    参考文献
    相似文献
    引证文献
引用本文

孙晓辉 凌震华 戴礼荣.融合自动检错的单元挑选语音合成方法[J].数据采集与处理,2016,31(2):385-392

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-09