电磁矢量阵中基于平行因子压缩感知的角度估计算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Angle Estimation for Electromagnetic Vector Sensor Array via Compressed Sensing-Parallel Factor
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    将平行因子框架与压缩感知理论相结合,解决了电磁矢量传感器阵列中的波达方向估计问题。首 先将接收信号构建成平行因子模型,然后结合压缩感知理论,对平行因子模型压缩。根据三线性交替最小二乘算法对压缩后的平行因子模型进行分解,最后利用信号的稀疏性,得到波达方向估计。借助压缩过程,本文算法降低了传统的平行因子算法的计算复杂度,节约了 存储空间。本文算法无需谱峰搜索,且同时适用于均匀线阵和非均匀线阵。该算法的角度估计性优于ESPRIT算法,且接近传统的基于平行因子模型的角度估计算法,仿真结果证明该算法的有效性。

    Abstract:

    We combine the parallel factor framework with the compressed sensing theory to solve the problem of the direction of arrival estimation for the electromagnetic vector sensor array. We first rearrange the received data matrix as a parallel factor model, and compress it to a smaller one based on the compressed sensing theory. Then the trilinear alternating least square algorithm is exploited to decompose the compressed parallel factor model. Finally, the angle estimation is obtained with sparsity. Owing to compression, the computational complexity of the algorithm is lower than that of the conventional parallel factor model-based algorithm, and more storage memory is saved. The algorithm needs no peak searching and is applicable to both uniform and non-uniform linear array. Moreover, the angle estimation performance of the proposed algorithm is better than that of the ESPRIT algorithm and close to that of the conventional parallel factor model-based algorithm, which can be verified by various simulations.

    参考文献
    相似文献
    引证文献
引用本文

张小飞 李书 郑旺.电磁矢量阵中基于平行因子压缩感知的角度估计算法[J].数据采集与处理,2016,31(2):268-275

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-09