一种限制输出模型规模的集成进化分类算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Ensemble Evolve Classification Algorithm for Controlling Size of Final Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    AdaBoost算法是一种典型的集成学习框架,通过线性组合若干个弱分类器来构造成强学习器,其分类精度远高于单个弱分类器,具有很好的泛化误差和训练误差。然而AdaBoost 算法不能精简输出模型的弱分类器,因而不具备良好的可解释性。本文将遗传算法引入AdaBoost算法模型,提出了一种限制输出模型规模的集成进化分类算法(Ensemble evolve classification algorithm for controlling the size of final model,ECSM)。通过基因操作和评价函数能够在AdaBoost迭代框架下强制保留物种样本的多样性,并留下更好的分类器。实验结果表明,本文提出的算法与经典的AdaBoost算法相比,在基本保持分类精度的前提下,大大减少了分类器数量。

    Abstract:

    AdaBoost algorithm is a typical ensemble learning framework. It linearly combines a set of weak classifiers to construct a strong one, whose classification accuracy, generalization error and training error are all improved. However, the AdaBoost algo rithm is weak interpretability since it cannot simplify weak classifiers from output model. Hence, one presents a new algorithm, ensemble evolve classification algorithm for controlling the size of final model (ECSM), by introducing the genetic algorithm into the AdaBoost algorithm model. Gene evolution and fitness function can mandatory reserve the species diversity of samples in the AdaBoost iteration framework, and leave better classifiers. With keeping the classification accuracy, experimental results show that the proposed algorithm greatly reduce the number of classifiers compared with the classical AdaBoost algorithm.

    参考文献
    相似文献
    引证文献
引用本文

宋文展 元昌安覃晓 周凯 郑彦.一种限制输出模型规模的集成进化分类算法[J].数据采集与处理,2016,31(1):197-204

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-09