人脸疼痛表情识别综述
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Survey on Facial Expression Recognition of Pain
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    自动疼痛识别技术在医疗保健,特别是在对无法用语言表达疼痛的病人的治疗和护理中具有广泛的应用前景,因此逐步受到研究者的关注。由于人的面部线索是很重要的疼痛评估依据,并且基于计算机视觉技术的人脸表情识别研究已取得很大进展,因此利用面部表情信息实现自动疼痛识别成为了一条有效的途径。本文首先简要介绍了目前常用的STOIC表情数据库、 婴儿疼痛表情分类(COPE)数据库、UNBC-McMaster肩部疼痛数据库和BioVid热疼痛数据库,然后从静态图像疼痛表情识别、视频序列疼痛表情识别、特定人物疼痛识别以及多信息融合疼痛识别4个方面对近10年的疼痛表情识别主要方法进行了详细 的介绍,最后对目前人脸疼痛表情识别现状进行总结和分析,并阐述了其存在的挑战和未来的发展方向。

    Abstract:

    In recent years, research on automatic pain recognition is of increased attetion , due to its wide application in clinics, especially for the treatment and nursing of patients who cannot express their pain vocally. Since the face is the vital cue for evaluating pain and the great progress has been made in facial expression recognition with computer vison technique, it is an effective way to recognize pain automatically utilizing facial information. Here, four existing databases used for pain recognition are firstly introduced, namely, the STOIC database, the Infant COPE database, the UNBC-McMaster Shoulder Pain Expression Archive database, and the BioVid Heat Pain databse. Then, the proposed methods in the last decade can be divided into four categories depending on the use of either static images, video sequences, person specific strategy or multimodal methods. Finally, the current state of the art in pain detection research, open issues and future directions are highlighted.

    参考文献
    相似文献
    引证文献
引用本文

彭进业 杨瑞靖冯晓毅 王文星彭先霖.人脸疼痛表情识别综述[J].数据采集与处理,2016,31(1):43-55

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-09