基于深度特征与局部约束掩膜的相关滤波跟踪算法
DOI:
作者:
作者单位:

江南大学物联网工程学院 江苏无锡 214122

作者简介:

通讯作者:

基金项目:

国家自然科学(No.61672265,U1836218)


Deep Features with Local Constrained Mask Based Correlation Filter Tracking Algorithm
Author:
Affiliation:

School of Internet of Things Engineering,Jiangnan University,Wuxi Jiangsu 214122

Fund Project:

THE NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA (GRANT NO.61672265,U1836218)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了提升相关滤波算法在目标遮挡、快速运动及背景干扰等情况下跟踪结果的精确度和鲁棒性,提出一种基于深度特征与局部约束掩膜的相关滤波算法。在经典相关滤波算法的基础上,利用学习得到的二值矩阵作为局部约束掩膜对滤波器能量分布进行裁剪,使模板信息更加集中,实现目标搜索区域扩大的同时有效抑制循环矩阵方式处理样本时产生的边界效应;将深度特征引入特征提取过程中,通过对目标样本进行旋转、翻折和高斯模糊等处理,扩充训练样本数量,使特征模板学习到更为丰富的目标信息。与主流算法进行对比实验,验证本文算法在处理目标遮挡、背景嘈杂以及光照变化等干扰时的鲁棒性。

    Abstract:

    In order to improve the tracking accuracy and robustness of correlation filter based trackers, especially with challenging factors like occlusion, fast motion, background clutter and so forth, an improved Deep Features with Local Constrained Mask Correlation Filter Tracking Algorithm is proposed. Based on the classical correlation filter tracking algorithm, the learned binary matrix is proposed as a local constrained mask to achieve pruning the filter energy, which concentrates the template information and effectively alleviates the boundary effects caused by circular shifted training samples. Deep features are introduced in the process of feature extraction. By exploiting rotation, flipping, and Gaussian blur operations, the training sample set is expanded, which makes feature templates learn more target information. Compared the robustness of our algorithm with mainstream methods under distractions like occlusion, background clutter and illumination changes.

    参考文献
    相似文献
    引证文献
引用本文

王译萱,吴小俊.基于深度特征与局部约束掩膜的相关滤波跟踪算法[J].数据采集与处理,2019,34(5):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-03-19
  • 最后修改日期:2019-06-28
  • 录用日期:2019-09-12
  • 在线发布日期: 2019-12-05