一种基于关联频繁模式的振动数据流挖掘框架
DOI:
作者:
作者单位:

1.广东培正学院 计算机科学与工程系;2.南京理工大学 计算机科学与工程学院

作者简介:

通讯作者:

基金项目:

国家自然科学(No. 61640020):


A Novel Data Mining Framework for Vibration Data Stream based on Associated Frequency Patterns
Author:
Affiliation:

1.Department of computer science and engineering, Guangdong PeiZheng College1;2.School of Computer Science and Engineering, Nanjing University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对大型滚转机器轴承故障诊断应用场景,传统故障识别技术通常存在诊断识别精度低的问题。为此,本文在频域分析基础上,提出了一种新的数据挖掘框架——关联频繁模式集挖掘框架(Associated frequency patterns mining framework, AFPMF),由数据预处理、关联频繁模式集挖掘和故障状态监测组成。首先,在数据预处理过程中,AFPMF在时域上使用时间窗分块划分机械振动数据流,再使用傅立叶变换对数据流进行时频变换实现故障频率特征提取。其次,使用基于滑动窗的关联频繁模式树构建压缩树,求解关联频繁模式集,实现数据挖掘过程。最后,根据数据挖掘结果中出现的振动频率判别潜在故障,从而实现监测故障状态。通过对比AFPMF和传统方法在轴承故障诊断应用场景的实验结果可知,相比传统方案,AFPMF具有更优的故障识别性能。

    Abstract:

    In the scenarios of diagnosing bearing faults for large rotary machinery, the ower identification accuracy existed in traditional fault identification technique. Hence, based on the frequency-domain analysis, a novel data mining framework called associated frequency patterns mining framework (AFPMF) was proposed in this paper, which was consisted of data pre-processing, associated frequency pattern mining process and fault status monitoring. In the data pre-processing of AFPMF, time window was adopted to divide the machinery vibration data stream into multiple sub-blocks, and then Fast Fourier Transform (FFT) was employed to make the data sub-blocks time-frequency transform for frequency feature extraction. The associated frequency pattern tree with sliding window was also used to build a compact tree for data mining. Finally, the potential fault status with the vibration frequency existed in the mining results was identified to realize the fault status monitoring. After the comparison of AFPMF and the traditional methods in the bearing fault diagnosis, the results show that AFPMF had higher identification accuracy than other traditional ones.

    参考文献
    相似文献
    引证文献
引用本文

张艳梅,陆 伟,杨余旺.一种基于关联频繁模式的振动数据流挖掘框架[J].数据采集与处理,2019,34(5):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2017-12-14
  • 最后修改日期:2018-03-07
  • 录用日期:2019-09-12
  • 在线发布日期: 2019-12-05