基于KICA-KFDA的集成故障识别算法
DOI:
作者:
作者单位:

南京师范大学 电气与自动化工程学院 南京,南京师范大学 电气与自动化工程学院 南京,南京师范大学 电气与自动化工程学院 南京,南京航空航天大学自动化学院 南京

作者简介:

通讯作者:

基金项目:

国家自然科学基金重点资助项目(60234010);航空科学(05E52031);国家自然科学青年基金资助项目(61203092);江苏省高校自然科学研究项目资助 (11KJB510007)


An integrated fault identification algorithm based on KICA and KFDA
Author:
Affiliation:

School of Electrical and Automation Engineering,Nanjing Normal University,School of Electrical and Automation Engineering,Nanjing Normal University,School of Electrical and Automation Engineering,Nanjing Normal University,College of Automation Engineering,Nanjing University of Aeronautics and Astronautics

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对复杂的化工过程,提高过程监控能力,提出基于核独立成分分析(kernel independent component analysis,KICA)和核Fisher判别分析(kernel fisher discriminant analysis,KFDA)的过程监测与故障识别方法。通过利用核独立成分分析建立正常工况模型,得到检测故障信息。在发生故障的情况下,利用Fisher判别分析方法在高维的特征空间的特点和优势,可求出满足最大分离程度的核Fisher判别向量和特征向量,根据当前故障的判别向量和历史故障数据集中所含故障的最优核Fisher判别向量的相似度进行故障识别。仿真结果验证了所提方法的有效性。

    Abstract:

    To improve the statistical monitoring performance of complex chemical process, a new statistical process monitoring and fault identification method having the character of nonlinear which based on kernel independent component analysis (KICA) and kernel fisher discriminant analysis (KFDA) is proposed. KICA is used to establish the normal operating conditions and identify the fault. If a fault occurs, the nuclear fisher discriminant vector and feature vector F of the process data are extracted from the Fisher subspace. Thus, the batch normal or not can be detected by comparing distance with the predefined threshold. Comparing the present discriminant vector and the optimal discriminant vector of fault in historical data set, the similar degree can be identified. According to the similar degree, the perform fault can be diagnosed. The results of simulating demonstrate that the proposed method can efficient in detecting and diagnosing the malfunctions,with more accurate result.

    参考文献
    相似文献
    引证文献
引用本文

许 洁,赵瑾,刘如成,胡寿松.基于KICA-KFDA的集成故障识别算法[J].数据采集与处理,2013,28(6):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2012-11-21
  • 最后修改日期:2013-11-12
  • 录用日期:2013-05-28
  • 在线发布日期: 2014-01-08